Welcome to the CSU Adopting AT ePortfolio Showcase. Discover faculty created ePortfolios documenting their course redesign experiences and accomplishments by entering a search term or browsing by discipline.
Abstract:
Principles of Financial Accounting is the first required course for business majors. Traditionally, the repeatable course rate (grade of C- or lower) has approached 50%. Using a flipped classroom, Dr. DeBerg requires students to view classroom lectures before the first class meeting each week. In the second meeting, students are broken into four groups of 30, with each sub-group broken down into groups of three. The breakout sections are led by four outstanding senior accounting majors, called mentors. During the breakout session, students do their "homework" during class time. Hence, what formerly was homework becomes classwork; what was classwork now becomes homework.
Abstract:
BIOL 204 (Introduction to Life Sciences) was redesigned as a Biology Boot Camp in Fall of 2014. The redesigned BIOL 204 was offered as a 40 hour course the week prior to the academic year (as a BIO 195). The target audience was students between their Freshman and Sophomore years who struggled to pass chemistry and math courses. The first offering was as a BIO 195 pilot. We have found that this population often fails the first core biology course, and thus this is a bottleneck to graduation. We explored ways to offer it as a hybrid or online and with virtual labs in order to prepare students for the real lab experiences, which are much more costly. The intent is for the students to form a learning community and to continue with Supplemental Instruction heading forward into the fall se mester. We found that the students in the cohort performed slightly better than the class average (CHEM 210 class average 70% pass rate, cohort 71% pass rate), even though that population typically had an almost complete failure rate. All of the students passed at least one component (lab or lecture), and they also all passed the chemistry they were taking concurrently. Because of the success, we have implemented similar type of student discussion and support as BIO 295 going forward.
Abstract:
BIOL 102/102L Human Biology - looking at the transfer of pedagogy from a traditional undergraduate lab course, to a functional and successful online environment. The aim was to match and improve upon well-known tactics to deliver a lab course, using the redesign effort to create an interactive student experience.
A Hybrid G.E. Biology Course using Online Discussions
Abstract:
NSCI (Introduction to Living Systems) is designed to be a G.E. biology hybrid class. Students learn the course material online, attend a one hour discussion and then a two hour lab activity to interpret the lessons. The online component includes test assessments in addition to weekly homework assignments. In-class meetings sections have 144 students and incorporate in-class discussions with dynamic PowerPoints that include video clips and iClicker participation. The online and in-class discussions are accompanied with 24-student lab sessions, which include hands-on learning activities that correlate with learning goals for each week. This course has three sections and a total of 432 students. We focus on three major biology themes during the semester: Evolution; Ecology; and Human Disease and Genetics. Each theme is covered over a five week period. At the end of each theme an online exam is administered. Student surveys are accessed each semester.
Abstract:
As more people become increasingly connected across larger distances in different ways, they are creating and participating in a new world society in which they do more similar things, affect each other’s lives more deeply, follow more of the same norms, and grow more aware of what they share. “Globalization” is one name for that process. Using historical examples and current events, we engage students with one process of understanding how and why globalization happens.
Abstract:
The primary goal of this project is to achieve greater student success in two of our bottle-neck chemistry courses through Supplemental Instruction sessions. Analysis of the showed an improvement of the overall course grades for those students who attended more than 25+% of the SI sessions offered. As a matter fact, these students did score (on average) one letter grade better than the "non-SI goers". And regular "SI goers" who attended 80+% of the sessions made an average of 90+%. A similar trend was observed in another quarter.
Abstract:
Supplemental Instruction, a near-peer led small group, free, optional study session model developed originally at the University of Missouri, Kansas City, will be added to two Organic Chemistry II lectures, with a combined enrollment of around 100 students, offered at California State University Stanislaus one during the Fall 2014 Semester and the other during the Spring 2015 Semester. Organic Chemistry is a very rigorous science course that is required for a variety of science majors and pre-health professions which traditionally has a high percentage of repeatable grades. Supplemental Instruction or SI has a proven track record of improving student learning in difficult courses as evidenced by higher GPAs by students who regularly attended SI sessions at various Universities including our sister campus CSU Fullerton.
Abstract:
This course will be modified to include supplemental instruction in person by peers. Additionally, screencast video tutorials will be prepared by the instructor and posted online for students to access. These screencast videos will be integrated with an already existing online homework system. The effectiveness of this course redesign will be assessed by comparison of average GPA from this semester with those from previous semesters in which I taught this course. Additional assessment will be done by comparing scores on the American Chemical Society standardized exam with scores on this exam from previous semesters.
Econ 222: Using Clickers and Online Adaptive Learning Tools
Abstract:
This course redesign will focus on using new online and in-class technologies to improve analytics to better understand student mistakes and gaps in learning. Additionally, the use of technology in creating on-demand, targeted screencasts and multiple iterations of online tests shows encouraging signs of reducing student anxiety around economics, as well as improving instructor immediacy and availability despite relatively large class sizes (68-230). Although technology can go a long way to improving student performance through reducing anxiety via allowing students to interact with the material when and as long as they like, it is more well-suited to assisting with the purely technical aspects of Economics. For context, critical thinking and communication aspects, in-class discussion and work are non-replaceable: I reduce lecture but increase active learning activities in class to protect these crucial elements of learning to think like an economist.
Abstract:
The Introduction to Circuit Analysis I course is the first EE/CompE course that our students take. It is a sophomore level course. Students must receive a C or better in the course in order to move forward to the other EE and CompE courses in the two undergraduate degree programs. Coming from a diverse background with a varied skill set, our students are introduced not only to a new technical area but also a new way of thinking, that is, using a systems approach to analyzing simple as well as complex electrical circuits using basic, fundamental engineering principles. Thus, the course may appear difficult (current D, F and WU failure rates are in the 40% range) and the goal of this Course Redesign Project is to bring additional, supplementary learning methods to enhance the academic environment and provide a learning methodology that students may employ in many of their other engineering courses.
Abstract:
Redesign AAS 210: History of Asians in the United States to enhance student learning and teaching effectiveness through integrating instructional technologies and pedagogical techniques to: engage students; increase peer-to-peer learning; achieve higher critical thinking domains of knowledge; address issues with accessibility and availability.
Abstract:
We focused on improving student success in entry level math classes in the California State University and California Community College System. Our consortium has developed an innovative, technology-enhanced hybrid course model that has significantly improved course completion and content mastery outcomes in entry-level mathematics courses. The model relies on five primary components that are carefully articulated to create a reliable “flow of learning” for students.
Abstract:
In an effort to increase passing rates in first-semester Calculus, we have redesigned the way the course content is disseminated. All in-class lectures have been eliminated and replaced with online videos for students to view outside of class. Students spend in-class time actually working on solving calculus problems and receiving individualized help and coaching from their instructor.
Abstract:
Changing from traditional lecture based teaching involves redesigning an entire course to achieve better learning outcomes and lower costs for students by taking advantage of the online technology. It requires completely rethinking the way we deliver instructions by utilizing a concept of “flipped” teaching, turning the teaching content into video course, allowing students to view lectures at home and using a valuable class time for collaboration and discussion.
Abstract:
The course re-design was initiated in 2010 to transition a semester-long three-meetings-a-week for 50-minutes course of 150 students to a semester-long hour-and-twenty- minute face-to-face meeting once a week hybrid course with 150 students. Following the initial course re-design, in 2013, a fully on-line course was developed as an eight-week summer class with 45 students. The course will be taught as a semester-long fully on-line course in Spring 2016 with 60 students. This is a high-demand course that is critical to efficient progress-to-degree. The College of Humanities, Arts and Social Sciences (CAHSS) encouraged the Department of Politics to transform the course so that multiple formats of the same course (e.g., fully face-to-face and fully on-line) are taught in the same semester to accommodate different learning styles and student needs.
PSY 304 (Research Methods) Through a Blended Classroom
Abstract:
PSY 304 research methods is a Lecture+Lab core course in the psychology major. As the lab is held in a room with 25 computers, there are a limited number of spots per quarter. Consequently, many students delay taking the course, impeding their ability to do well in higher-level courses. Additionally, performance on the course has a bimodal distribution and only a few students consistently demonstrate all learning outcomes. The goals of the project were to enhance student learning and increase the number of students enrolled, while ensuring that the grading workload was manageable. For the redesign project, lecture will still be offered face-to-face, but the lab will be online. Moodle will be used: (1) to communicate instructions for all laboratory activities, including reading assignments, active learning exercises, and progress checks for the research project (2) to upload taped lectures about developing a research project and writing a APA-style paper (3) to submit all assignments and receive prompt feedback.
Abstract:
course (Critical Thinking) was taught for the first time in Spring 2015. It is taught completly online. After taking a QOLT class, several planned changes to the course were conceived. The intention of the redesign is to make the course more personal, increase the presence of the instructor, with the goal increasing the accountability and performance of the students who enroll in the class. In order to accomplish this a number of best practices that were covered in the QOLT class need to be implimented. These changes include such things as increasing the presence of the instructor in the chatrooms, more of a video and web chat presence, and reducing the lag between assignment deadlines and return of grades. Other changes will be detailed in the course redesign materials below.
Abstract:
FINA 307 (Business Finance) has been identified as a systemwide high-demand low-success course in the CSU. We have restructured FINA 307 into a hybrid course by supplementing traditional in-class lectures with web-based out-of-class learning activities and on-demand help system. To improve the student success rates and narrow achievement gaps, we redesign FINA 307 to accomplish two goals. First, We have developed more engaging pedagogies to make the teaching and learning process more learner-centered, and to inspire students to move from passive recipients of knowledge to active learners. For example, integrate technology into lectures, provide real data with hands-on experience, adopt clicker response system, encourage student study groups, etc. Second, we provide on-demand help, such as, tutoring service, online learning system, homework management system, and video tutorials.
General Education Biology Class Using Online Activities and Clickers
Abstract:
BIOL 1010 (Principles of Biology) is a 3-unit survey course in biology for non-majors, and meets the CSU Stanislaus general education requirement in area B2. In this course we cover cells and molecules, genetics, evolution and ecology. This is a large lecture course, capped at 119 students. Historically (e.g., AY 2008-09 - 2011-12) D/F/W rates averaged 41% across all sections. My sections (n=7) of the course, prior to interventions detailed in this ePortfolio, averaged a 33% D/F/W rate. The goal of this project was to significantly reduce the D/F/W rate in the course. In Fall 2014 I piloted nine new interventions in the course; that semester the D/F/W rate dropped to 26%. This 15-point drop in the D/F/W rate is encouraging, and I am repeating the same course structure and interventions in Spring 2015 to see if the same results occur.
Abstract:
Students earning poor or failing grades in introductory major’s coursework are left to choose from continuing with upper level courses ill prepared, repeating courses with prior poor performance, or changing their major. Too often these students go on only to fail again. Their continued struggle can present a bottleneck within the curriculum for a degree program and / or lead to extended times to graduation. Previously we identified poor study habits among students in our freshmen course including low numbers of hours per week spent in study. Among new pedagogical tools recently developed we are interested in those that may encourage student engagement with coursework material. In an attempt to increase student engagement with course material we will test efficacy of adaptive learning software assignments paired to course lecture topics. In evaluation we will examine student perceived study times, software provided measures student required time for completion, and performance on biology concept inventory assessments.
Abstract:
To identify, explore and institute pedagogical course design initiatives for Fin 360 which the Chancellor’s Office has designated as a “bottleneck course” i. e. a high enrollment, low success course in the CSU. Such courses currently have a too high a proportion and number of “repeatable grades which are grades of D, F and W” which impedes timely graduation. The ultimate goal is to improve student learning, access and thus efficacy to overcome this bottleneck. Feasibility of "scaling-up" across instructors by increasing the number of offerings of such a redesigned course and/or increasing class size will be explored as well. The redesign effort plans to achieve the above goals by making online delivery more interactive, dynamic and effective which may allow "flipping" the class in an In-class setting and a more personalized and effective access to the content material in the online/hybrid setting.
Abstract:
This course is designed to provide an introduction to the basic concepts and ideas of chemistry and demonstrates how they are applicable to every day processes. The basic knowledge of chemical principles and scientific literature developed in this course will allow students to read about science and technology with some degree of critical judgment.
Abstract:
Supplemental Instruction (SI) sessions are being implemented into the organic chemistry curriculum. SI sessions are problem-solving sessions led by a peer who has previously taken and excelled in the course. The effectiveness of this course redesign will be assessed by comparing student attendance data with student grades. Additionally, student attendance data will be compared with student performance on the ACS standardized organic chemistry exam that will be administered at the end of CHEM 333. Preliminary results in CHEM 331 indicate that student grades improve based on the number of SI sessions attended.
Abstract:
SI model will be implemented in two sections of General Chemistry I for the Spring of 2014 and there will be one SI leader for each section. Each student will be assigned to a lecture and is required to attend the assigned lecture and lead SI sessions for the course.
Abstract:
The objective of this proposal is to implement a few simple, proven strategies to improve student learning and success rate. Our implementation strategies include making learning meaningful through real world connections, challenging them to higher standards, providing appropriate tools and effective resources. Resources we provided include online tutorials of prerequisite materials for review before the class, clear course objectives for each session along with class worksheets, online tutorials for important concepts for review after the class, real word examples for each major concept (from current news if possible) and practice quizzes with feedback. Links to some of the short video clips we created are attached.
Redesigning History Curriculum with Supplemental Instruction
Abstract:
This project is intended to address both pedagogical and practical issues that create challenges for students in completing their lower division General Education requirements in History at CSUF. In phase 1, the focus is on creating models for innovative and rigorous online or technologically supported sections of History 110A, 110B, and 180 that provide greater access for students while maintaining intellectual rigor. In phase 2, the focus shifts to pedagogy, student preparation, and instructional support. Key elements of this phase include the creation of faculty coordinator positions for History 110A and 110B. the creation of a faculty development curriculum, and the development of a tutoring and supplemental instruction program for World History courses.
Hybrid Business Calculus Course Using ALEKS and Group Projects
Abstract:
In Precalculus Algebra, we worked to improve the degree to which the course prepares students for calculus. We collaborate with Course Redesign teams in Calculus to improve our measures of student preparedness.
Abstract:
This project is an attempt to improve student learning in an introductory E&M physics class. The class is taken by over 1000 science and engineering students annually and is on a key path, and therefore potential barrier to graduate for many Cal Poly Pomona students. This course is one of a number of attempts to use a flipped classroom structure to study student learning in such classes. We are collecting data on student learning via research-based assessment tools in both the flipped and traditional classes to assess the impact of this pedagogical strategy, with the goal of improving student persistence and eventually graduation rates.
Abstract:
The broad goal of this project is to increase student success in calculus-based introductory physics, specifically the first or mechanics quarter of the course. The class will be "flipped" with class time devoted to in-class problem solving, with emphasis on examples, exercises, and clicker questions. Students will view multi-media prelectures and answer checkpoint questions before the class session devoted to the material. The course redesign will utilize smartPhysics.
Adaptive Learning in Introductory Biology (BIOL 152)
Abstract:
BIOL 152 is one of a three-semester introductory sequence for Biology majors at Chico State. To improve student outcomes, I am redesigning the course to introduce online Adaptive Learning tools. Student performance will be evaluated using pre-post assessments and grade distributions.
General Biology Using Adaptive Learning and Supplemental Instruction
Abstract:
General Biology 1 is a content-heavy foundational course for Biological Sciences majors and is also required for students in other STEM disciplines. While the lecture section is relatively large (96 students), in light of the high school experience of incoming freshmen, the lab sections (24 students) provide an opportunity for more individualized instruction. The course redesign strategies to be implemented in Fall 2014 include: a more direct emphasis on the development of effective study skills, metacognition and reflection; incorporating adaptive learning components to online homework assignments; mini-videos recorded by the lecture instructor to help students make the connections between lecture and lab material; and supplemental instruction. For students who actively engage in the course, these strategies should improve long-term success in meeting student learning outcomes, student preparation for advanced coursework, and pass rates in the course.
Biology with Supplemental Instruction, Clickers and Inquiry-Based Learning
Abstract:
Course redesign to increase capacity, better articulate with transfer students, and improve student success by reducing the total number of units (10 to 8) while retaining an inquiry-based curriculum. Redesign occurred during 2013-14 academic year and courses were piloted during the 2014-15 academic year with full implementation to start in the fall of 2015.
Abstract:
We redesigned a GE biology course by using existing web-based software to replace traditional wet labs. Two new modes of lab instruction were compared to the traditional offering: (1) all labs online with a "drop-by" help center and (2) a hybrid "flipped lab" model with two tracks of online and in-person labs alternating every week. Both modes included a face-to-face lecture. Engaging inquiry-based exercises were developed around each online activity where students are provided background information, guided though a series of basic experiments, encouraged to design their own experiments, and required to produce a simple scientific report that is delivered electronically. A rubric was designed so that graduate assistants can grade reports. The course offerings with online labs were piloted during the 2013/14 academic year. Formative assessment involved the tracking of students’ attitudes and performance. Summative assessment compared student performance for the online, hybrid and traditional modes.
Abstract:
Radical changes are required to make radical differences in the learning environment as well as radical gains in student achievement. At the beginning of the redesign all of the sections were taught using traditional lectures while the students listen and take notes. The typical pass rate (C or better) ranged from about 60 - 70% with under-represented minorities performing at the bottom. The overarching redesign theme is to utilize technology so that the learning environment is more fun and active. The most obvious course changes includes pre-recorded YouTube lectures and adaptive homework assignments. Failure rates have been cut by almost half, but the most important changes have been the positive impacts on student and instructor attitudes.
Abstract:
General Chemistry is an essential class for students who are considering a science career, however, for CSULB students passing General Chemistry is often a major challenge! This class traditionally had such a high failure rate (> 40% DWF) that its first semester component, CHEM111A, was targeted to become part of CSULB’s Highly Valued Degree Initiative program. Now CHEM111A is a model of success. Through a combined approach of instituting a chemistry placement exam prior to student enrolment, additional training of laboratory Teaching Associates, and an increased student advising and early warning system, students in CHEM111A now average an 85 percent pass rate, and score well above the national average on the standard American Chemical Society final. In this project the same approach was incorporated into the second half of this course, CHEM111B, starting in Fall 2013. The goal was to improve overall student success in the entire year-long class.
Abstract:
Preparation for College Chemistry (CHEM 101) is an entry-level course with a traditionally high percentage of repeatable grades (D, F, WU, W). High enrollment demand coupled with repeating students makes CHEM 101 a bottle-neck course. Supplemental Instruction (SI) increases student performance. We implemented a SI pilot project for CHEM 101 in the Fall 2013 quarter, and continued into the Winter quarter. (At the same time, SI was also implemented for CHEM 331.) Our results are positive for students who attended the sessions. Low attendance for the class as a whole needs to be improved.
Abstract:
Programming for Mechanical Engineers (ME 209) at CSU Northridge is an introductory required course for all Mechanical Engineering students, which focuses on programming with Visual Basic Application for Excel. Most entering Mechanical Engineering students do not have any background in programming, and tend to struggle with the logic and organization required in programming. Four to five sections of ME 209 are offered each semester, and at least one section is offered in the summer for a total annual enrollment of 200 to 240 students. The course emphasizes the solution of mechanical engineering problems using systematic methodologies. Topics include the use of flowcharts, variable types, the Excel/VBA environment, decision and looping structures, program debugging and effective programming practices. In general, the students are expected to apply the knowledge learned in ME 209 to subsequent courses and in their professional careers post-graduation. Recent senior exit interviews identified ME 209 as a course that should be considered for redesign to enhance student’s learning and success. I developed comprehensive set of tutorials to supplement in-class or online instructions. In addition, I am in the process of developing supplemental videos to the lecture discussions and tutorials. The uniqueness of the newly developed materials, namely, is that tutorial and videos are concept-based and proficiency-focused rather than general coverage of the material.
Redesigning History Curriculum to Include Supplemental Instruction
Abstract:
This project is intended to address both pedagogical and practical issues that create challenges for students in completing their lower division General Education requirements in History at CSUF. In phase 1, the focus is on creating models for innovative and rigorous online or technologically supported sections of History 110A, 110B, and 180 that provide greater access for students while maintaining intellectual rigor. In phase 2, the focus shifts to pedagogy, student preparation, and instructional support. Key elements of this phase include the creation of faculty coordinator positions for History 110A and 110B. the creation of a faculty development curriculum, and the development of a tutoring and supplemental instruction program for World History courses.
Sargeant, L.; Janssen, V.; Fitch, N.; Burlingham, K.; Brunelle, G.
Abstract:
This course traditionally has a very low success rate and acts as a bottleneck for the academic programs of students in STEM fields. We do have historical data that identify students `at risk" based on past courses and exam scores. We aim to increase student success through a coordinated combination of online homework sets, weekly remediation for the at-risk students, and milestone examinations.
Abstract:
I am developing hybrid and online versions of PHIL 102, Logic and Critical Thinking, that will be available to all Chico State students and successful in improving students' critical thinking skills. This course was developed to meet the A3 critical thinking requirement in EO 1033: “In critical thinking (subarea A3) courses, students will understand logic and its relation to language; elementary inductive and deductive processes, including an understanding of the formal and informal fallacies of language and thought; and the ability to distinguish matters of fact from issues of judgment or opinion. In A3 courses, students will develop the abilities to analyze, criticize, and advocate ideas; to reason inductively and deductively; and to reach well-supported factual or judgmental conclusions.” Success will be measured by comparing the results of pre-and post-tests designed to measure the critical thinking skills detailed above.
Abstract:
The broad goal of this project is to increase student success in calculus-based introductory physics. The class will be "flipped" with class time devoted to in-class problem solving, with emphasis on examples, exercises, and concept questions. Students will view multi-media prelectures and answer checkpoint questions before the class session devoted to the material. The course redesign will utilize smartPhysicsThis link will take you to an external website in a new tab. - developed at the University of Illinois.
Abstract:
This project aims to integrate content from a General Psychology MOOC course (hosted by Udacity and offered via SJSUPlus) and other open source materials into the SJSU Learning Management System (LMS), Canvas. Previous offerings of this course required students to access multiple websites (3) to obtain all course material. In SOTE ratings and message boards, students expressed confusion and frustration over this and they specifically asked and/or suggested that all material be available through Canvas. Requiring students to visit multiple websites lead to frustration, which may have decreased student motivation and increased unnecessary technological effort, thereby increasing the potential for sub satisfactory performance and a negative online learning experience. To that end, this purpose of this project is to provide all course content via SJSU's LMS to increase student accessibility and engagement, decrease unnecessary effort by visiting multiple websites, and evaluate student's engagement and self-regulation to determine the effectiveness of this project.
Abstract:
The first course in a large-enrollment, two-semester Human Anatomy and Physiology sequence was redesigned in order to achieve two objectives: (1) to increase the number of students who successfully complete the course with a grade of C or better, and (2) to improve mastery of foundational course concepts for all students. The redesign was implemented by recording lectures and posting them online for students to view outside of class. Class time was structured around a mix of active learning activities (clicker questions and small-group problem solving) and mini-lectures to reinforce students’ understanding of more difficult topics. The technologies introduced in the redesign – a web-based response system and online videos – supplemented those already integrated into the course (online homework and quizzes). The goal was to provide an array of tools and methodologies to address multiple learning styles and maximize engagement and success in a gateway course for which many students are underprepared.
Abstract:
STAT 108 is converted and compressed into an intense eight week fully-online course. Besides the pedagogical aspects inherent in an online course, the online delivery provides scheduling flexibility to students and frees infrastructure resources for the university. The eight week compression of the course keeps the students "in-the-zone" and avoids the fatigue that can result near the end of a 15 week semester course.
Abstract:
Our course redesign project spans three courses and four redesign interventions: The use of analytics, instructional videos and interactive applets, peer tutors, and input from client disciplines to make these lower division "introductory" courses appear more applicable to students and thereby increase their interest, participation, and ultimately, passing rates.
Abstract:
The pass rate in Biology 1150 may be improved if some of the content was delivered in a different way. Each semester students attend class, work in lab and complete online homework that was associated with and due before the lecture on that topic. The redesign includes a similar model, but by making a small change by adding in an adaptive follow-up could help students review and improve performance on their exams.
Abstract:
This project seeks to redesign the Biology 1BL Lab course, which is part of the Introductory Biology sequence for Biology Majors, to incorporate more active-learning modules in combination with computer simulations to effectively engage students. Our goal is to increase student success within this class and help prepare students with relevant laboratory skills, a proper conceptual framework, and effective learning strategies to improve their progress throughout the Biology major.
STEM Redesign with Flipped Classroom and Active Learning
Abstract:
We are redesigning and flipping these four lower division science courses so that in class time is spent in group problem solving, discussion, and other research-based high engagement activities. Our ultimate goal is to increase student learning and overall success in STEM disciplines. This proposal is supporting faculty in these efforts and because these are large enrollment classes it relies heavily on students who work as Learning Assistants (LAs) in the classroom. The program has been shown to improve student understanding of content knowledge, engage faculty in course transformation, and to increase the number and quality of future high-school science teachers.
Abstract:
In AY 2013-2014, we redesigned CSUF's second semester General Chemistry course, CHEM 120B, which includes concurrent lecture and laboratory components. Serving as a required pre-requisite for Chemistry, Biochemistry, and Biology majors, as well as for many other students pursuing career paths in the health professions, total course enrollment is limited by a lack of space and materials in the laboratory component. Additionally, the course had a high average failure rate (C- or lower) of 23% due to what we suspect are poor topical parallels between the laboratory and lecture lessons. Our redesign of the course involved a complete rewrite of the laboratory portion of the course, which included the incorporation of a virtual laboratory component to complement the students’ wet lab experience. The pilot year of our redesign proved successful in increasing the average passable rate of the course, and so we were granted additional support funding to continue our work.
Abstract:
This redesign project seeks to improve student engagement, both with fellow students and with the instructor in a fully online Chemistry 100. The online delivery mode is convenient for many of these students, particularly those from other campuses, as it gives them maximum flexibility.
Abstract:
We hooked students into the content of our new introductory geology course using popular Hollywood movies, but we went beyond those movies so that students could recognize the ways in which the media lens distorted the nature of science. We started with a simple topic (dinosaurs) and slowly moved into much more controversial areas (such as water resources and hydraulic fracturing for natural gas). The mixture of science concepts, media, and policy allowed us to have students engage in thought provoking discussions. To succeed with that discussion in a fully online lecture and lab format, we engaged lots of humanizing structures such as team-based data collection using online tools, role-playing within teams, progressively revealed case studies, and discussions using VoiceThread and Moodle forums. In the end, our students felt like they got more human interaction and feedback in our fully online course than they do in typical face-to-face GE courses.
Abstract:
We utilize a hybrid model to teach what is usually a large lecture Precalculus Algebra class in a smaller "Active Learning" class setting. Our goals are to improve student persistence within the course, as well as student preparation for subsequent courses, such as the Calculus sequence. These goals are particulary crucial in spring semesters, as historically, a significant fraction of students that take the course in the spring failed to complete or pass the course in the previous fall. This course is also prerequisite for other courses in other disciplines, including chemistry and kinesiology. Increasing the quality of student engagement through the incorporation of technology for initial and ongoing assessment, as well as instant in-lecture feedback and emphasis on group work has led to positive impact on passing rates. Finally, we were able to incorporate robust supplemental instruction and academic advising in response to student performance on initial assessment, and are tracking student retention of core competencies in subsequent courses. This implementation has shown potential as an effective remedy for students at high risk of failing the course.
Redesign Calculus I Through Supplemental Instruction
Abstract:
The goal of Calculus I redesign is to increase student success in the course. There are three major components in the redesign: Supplementary Instruction, Course Note Outlines and Instructional Videos.
Abstract:
Big Ideas in Cosmology is a 3-module curriculum that is being developed by a team of faculty and staff in partnership with Kendall-Hunt/Great River Technologies. The curriculum uses interactive learning objects incorporating real data within a hybrid or online format. This transforms the class from a primarily lecture and book-based course to a more engaging format that builds important STEM (Science, Technology, Engineering, and Math) skills. Existing textbooks and "proven redesign" methods using multiple-choice test banks following templates administered through Moodle do not engage student thinking beyond Bloom's taxonomy level 1 (remembering). Our redesigned course is based on peer-reviewed education research into astronomical misconceptions, and engages students through additional taxonomy levels including understanding, applying, analyzing, synthesizing, and evaluating. These learning objectives are important to future student success in STEM fields, as well as other fields that require the development of critical thinking abilities. During spring 2014, we tested Modules 1 and 2 with Astronomy 100 and Modules 2 and 3 with Astronomy 350 in a hybrid, “flipped-classroom” format. In the summer 2014, we are offering both courses in a purely online format. Extensive evaluation is being conducted, including pre- and post- content knowledge assessment, and a study of learning attitudes.
Abstract:
We aim at constructing a fully online course in introductory physics at the calculus-based level that will provide students an authentic means of interacting with both the instructor and their peers in the course as members of a local scientific community while engaging this challenging material. Through the use of an innovative online interaction tool, Social Homework by Edudotonline.com, we aim to provide 1) excellent preparation for downstream STEM coursework, 2) an authentic experience of physics as an academic discipline and career, and 3) and affordable and flexible online course.
Redesign Sociology with Supplemental Instruction and Clickers
Abstract:
The project is a redesign of our basic Introduction to Sociology course. This is a common GE course, as well as the gateway to the major. We have redesigned it to emphasize "systematic empirical inquiry" -- which both exemplifies social scientific reasoning and processes, and provides majors with a solid foundation for subsequent coursework. The design takes advantage of online delivery of materials and technologies that facilitate supplementary materials.
Abstract:
For this course redesign, I surveyed students about what worked and did not work for them in the online environment for this course. Discussion forums are always a tough area in an online course and students wanted more direction. Students did not like the virtual labs I had used in the Spring '14 course and wanted more hands-on labs. I redesigned components of the course to implement more engaging labs and discussions. I also incorporated aspects of proven course design such as discussion rubrics and LMS exam strategies.
Online Elementary Statistics Using Open-Source Materials
Abstract:
This project aims to integrate MOOC and other open-source materials into Canvas, the LMS used at SJSU. Previous versions of this course required students to visit multiple web sites to access course materials and activities. Students expressed frustration and confusion at having to keep track of content and activities across these web sites. This dissatisfaction might have had a detrimental effect on student learning outcomes and engagement. In addition, the use of multiple web sites makes course-related activities more effortful and adds a substantial time barrier for students. One purpose of the project is to reduce the number of web sites students must visit to access course materials and activities. Another purpose of the project is to examine ways to improve student engagement, self-regulation, and self-reflection (e.g., through self-monitoring, goal setting).
Abstract:
This study will provide an opportunity to determine whether the implementation of the flipped classroom format facilitates deeper learning by introductory biology students in the laboratory setting. Pre-lab videos that provide background and instruction regarding each lab will be provided to a subset of lab sections each week in an effort to allow more time in lab for additional active learning experiences for these lab sections. Moreover, this study will allow us to evaluate whether the additional time provided during the laboratory session for additional active learning experiences will provide students with a better understanding of the link between the lab experience and specific conceptual content encountered in the lecture portion of the course.
Abstract:
The purpose of this project was to incorporate a series of modules for students in the core genetics course at CSU Monterey Bay. Biology 311 is a gateway course for the Biology major at CSUMB, and required for all Biology majors. As such, the size has increased from 30 students to 75 students per semester. Therefore, we have implemented a series of modules that can be accessed before and after class to enhance student access to genetic principles and laboratory-like projects in a course that does not currently have a hands on component. These modules are discussed in the classroom in groups, allowing the instructor to incorporate more hands on learning in the course, and work with a "flipped classroom" model a few times during the semester. The strategy is to allow a large number of students access to different teaching/learning styles and enhance the overall retention of knowledge and a greater understanding of the application of genetic principles in this core Biology course.
FIN 300 Redesign Using Placement Exams and Tutoring
Abstract:
At California State University, Long Beach, FIN 300 (Business Finance) is the required introductory finance course for all business majors. Understanding the importance of the course, the Department of Finance formed a FIN 300 redesign team to improve the quality of the FIN 300 course. Recommendations are provided to resolve the issues that are negatively affecting students’ learning ability. Redesigned activities include (1) Streamline the procedure to identify and assist the potential failing students, (2) Revise the SCO with certain standard (obtain approval from faculty) such as learning outcomes and assessment; faculty should follow the SCO and incorporate the redesign materials & methods, (3) All the faculty of FIN 300 meet two times each semester to discuss the issues and possible improvement in teaching FIN 300, including the incorporation of “Re-design” into teaching, (4) Appointment of a lead Professor to in charge of the content.
Redesign General Chemistry with Online Homework (ALEKS)
Abstract:
The online homework system ALEKS is employed to increase student success in General Chemistry, in response to increased class sizes and traditionally high D/F/WU/W rates. An efficient and effective implementation of online homework must be created using assessment feedback and policy refinement to obtain maximum student learning. Our coordinated ALEKS implementation across all course sections includes common expectations for each weekly due date, with topic counts matched to typical student learning curves; common homework policies; and common homework grade weighting. Students are supported by a TA-staffed ALEKS computer lab Monday through Friday. Initial assessment results are promising and will be reported in due time.
Using Supplemental Instruction in Organic Chemistry
Abstract:
The first part of the redesign applied to this courseis an early intervention exercise to give the students a sense of their level of mastery of important concepts from Chem 320A. A 25 question multiple choice exam was given during the second meeting of the class. Based on the results poorly performing students were asked to participate in the SI section attached to the course. This SI section is the other component of the course redesign.
Abstract:
This course redesign focuses on flipped classroom instruction, writing to learn, and integration. The theme integration is reflected in the flipped classroom pedagogy in terms of better integrating students into the learning environment, increasing student engagement with the material, and developing better communication between students and instructor. It incorporates supplemental writing instruction into the classroom environment and integrates real world applications in the form of service learning.
Abstract:
We teach lower-division United States history courses fulfilling the CSU’s American Institutions Requirement that every single graduate of our public university system should be able to describe the origins and practice of representative democratic government. Our small department enrolls more than 2,000 students every year in these courses, mostly in "mega-sections" with approximately 120 students. Because of these great student numbers and the widespread reach of our courses among native freshmen and sophomores, we believe we can play a critical role in improving the university’s retention and graduation rates. To redesign our courses, we undertook three major changes. We reconceived our courses as: 1) a critical college “gateway” experience rather than as separate stand-alone classes; 2) an exciting laboratory for the face-to-face practice of democracy; and 3) an active learning opportunity, defined by team-based classroom strategies for student debate and complex problem solving.
Abstract:
In Business Calculus, we restructure our course from a 4-credit (3 hours of lecture 1 hour of lab) format to a 3-credit (two hours of large lecture, 2 hours of lab) format, at the request of the College of Business. Our past projects in Math 115 included a focus on providing individualized remediation for students who have not had mathematics in a long time, and on increasing the relevance of the content, technology and pedagogy, following the recommendations of the CUPM for Business and Management. Now, we strive to maintain these and expand on them as we change the materials to accommodate the new format. The new 3-unit Math 115 will run for the first time in Fall 2015. Spring 2015 will be dedicated to preparations for this change.
Abstract:
Pre-Calculus I at SDSU is taught in large, 200-500 student lecture sections. The large enrollment classes were proving difficult to staff and therefore the faculty attempted to implement online-only classes. The first such course posted a failure rate of over 50%. Two major innovations have been undertaken to rectify this situation: (a) the use of small, weekly study groups taught by undergraduates to supplement the online instruction; and (b) an inverted classroom format with the use of peer tutors during a face to face class that is divided into pods of 20-25 students. This report focuses on the second of these innovations.
Abstract:
The broad goal of this project is to increase student success in calculus-based introductory physics, specifically introductory mechanics. As this course is the first university Physics course for the majority of science and engineering students at Cal Poly Pomona, it is a prerequisite to all subsequent physics courses and hence the critical point at which to set students on a positive trajectory for learning physics. My class is "flipped." Students view multi-media prelectures and answer checkpoint questions before the class session devoted to the material. Class time is devoted to mini-lectures reinforcing the on-line prelectures, in-class worked examples and exercises emphasizing quantitative problem-solving strategies, and interactive "think-pair-share" questions emphasizing key physics concepts. The course redesign utilizes smartPhysics, developed at the University of Illinois.
Abstract:
PHYS 100AL is the laboratory that accompanies the first algebra-based introductory course on Physics. Due to increased demand, we are having difficulty offering enough sections of this laboratory course unless we renovate and create a new physical laboratory. A way to solve this problem is to “hybridize” the PHYS 100AL. This will allow us to double the capacity of these labs so we can offer fewer sections but still accommodate more students. Our hybrid lab comprises 6 in-class labs which are the traditional labs done in a controlled environment employing specialized and more sensitive equipment plus 6 take-home labs which are experiments that students perform outside on their own schedule. These take-home labs are "wet labs"; they are actual experiments performed with physical objects and not simulations performed on a computer. This reminds the students that science does not happen only inside a lab but is all around us. It also reinforces the importance of errors in any measurement as the take-home labs tend to be less precise due to the simpler equipment used. We also took this opportunity to update the lab manual to introduce the use of EXCEL in data analysis. In addition, although errors in measurements, their treatment and propagation of errors are emphasized in the old lab manual, we find that the majority of the students have a very poor understanding of what they are doing and are not able to interpret their use. The redesigned lab manual incorporates changes to address this problem.
Abstract:
Science education researchers have often noticed a disconnect between the way students view scientific knowledge and learning and the way scientists or science teachers view them. Students often see science as a body of facts to be memorized rather than a way of looking at the world and building new knowledge. Online education can easily reinforce the fact-memorization view if delivery of content is the main emphasis. For this project, I hope to foster a view of science more consistent with that of practicing scientists through (a) explicit discussion of ways of thinking and learning in science,(b) assignments that require students to use and identify scientific thinking skills, and (c) required discussion of course content via small group and whole class blogs.
Abstract:
Biology 203 is an introductory course in data analysis, designed specifically for students entering natural and life sciences. The concepts and skills taught in this class will form the foundation of students’ understanding of quantitative data analysis and comprises a key component of their undergraduate science education. The course has been identified as a bottleneck course, both in terms of availability and student success. Therefore, in redesigning the course a key goal was to improve student retention and performance. The format chosen was a flipped approach, in which students view online lectures and complete online quizzes outside of the classroom, then attend regular class sessions where they complete exercises designed to reinforce learning and develop proficiency in basic statistical analysis. Outcomes from the first semester when the new course was implemented for two sections indicated that redesign was successful in both target areas. In those sections that were flipped (n = 48 students), all enrolled students completed the course, the failure rate fell from 18% to 4% and the overall performance improved by 6 percentage points.
Abstract:
We seek to introduce active learning and redesigned course content in Biology 1A, an introductory course for biology majors. We are aligning the content with the five core themes emphasized in Vision and Change in Biology Education published by American Association for the Advancement of Science. During this semester, we are introducing a module on "transformation of energy and matter" designed using backward design. We are using clicker questions for active learning and case studies which demonstrate applications of the key core concepts. In addition, we have incorporated adaptive testing modules available with the textbook to provide feedback to students about their learning. Lastly, we will also identify students at risk early in the semester and encourage these students to enroll in supplemental instruction. Our main goal is to increase student success rates in this class and provide the framework for future biology courses.
Abstract:
MGMT 307 is a core course for the BSBA degree and a pre-requisite for most 400-level management courses (in three options--Management, HRM and Operations Management and additional upcoming two options--Entrepreneurship and Health Care Management). It is now offered as a MEGA section enrolling 100+ students. For a MEGA class it is almost impossible to include team presentations and other team assignments and activities which is an integral part of this course. Lack of team-work and team activities consequently decreases student engagement and learning. The course redesign specifically addresses this problem affecting MEGA classes in core courses by using the hybrid and partially flipped classroom.
Abstract:
Our goal is to develop and implement an SI system in which SI leaders are chosen based on interactions with instructors in chemistry classes, and are trained with their peers and class instructors in addition to training from the Learning Assistance Center. Together, this approach is envisioned to foster SI leaders capable of maximizing the learning associated with SI.
Supplemental Instruction in Organic and General Chemistry
Abstract:
This project sought to improve the pass rate in the traditionally difficult courses of organic and general chemistry. Through the implementation of SI, students served as peer leaders and mentored other students in group study sessions. Students attending these optional sessions performed significantly higher on standardized assessments and GPA than those not attending, and the gap between underrepresented students and non-underrepresented students narrowed for students attending SI. Online resources such as homework and exams led to increased student performance on standardized exams and led to students feeling more engaged in their studies than students completing written homework. These proven practices were implemented at CSU Bakersfield, CSU Stanislaus, and CSU Long Beach, and each institution has had success in their bottleneck chemistry courses.
Abstract:
Redesign PHIL 102 Logic and Critical Thinking so that it can be effectively taught fully online. The redesign focuses on making difficult material more accessible to students, helping students evaluate their understanding of the material, and monitoring student learning.
Abstract:
The redesign will address this issue through the use of online technology that allows for extensive review of material, video lectures, and frequent and repeated assessment through electronically graded work. The redesign is accomplished through the custimization of an online textbook and learning tool called MyEconLab and will consist of the creation of numerous online video lectures and a systematic roadmap to lead the students through the material incorporating extensive and repeated learning assessment touchstones from the Study Plan within MyEconLab.
Electric Circuits Concepts Using Current Technology
Abstract:
Student success in electrical engineering is built on mastery of foundational circuit analysis concepts such as Kirchhoff's laws and the Thevenin and Norton theorems. However, the course topics in which these concepts are taught comes very early in the student's post baccalaureate career. Many students at this level have not yet developed sufficient skills such as effective note taking, building conceptual frameworks that integrate new ideas with existing knowledge, and the need to utilize concepts from prerequisite courses. This paper describes web-based supplemental materials, which is developed at our university. Students may review and practice these foundational circuit analysis concepts at any time during their academic career. We intend to improve learning and retention by providing engaging interactive online resources such as lectures notes, examples, simulations, and practice problems. These learning materials are completely online and free to help beginning electrical engineering students learn, and it can also be accessed by students in subsequent courses to refresh their knowledge of these topics at any time.
Fully Online History 110 Course (US History to 1877)
Abstract:
Project Abstract This sixteen week on-line course will provide students in a non-traditional setting access to the same material in a typical face to face class. Materials have been carefully selected to guide students seamlessly through the semester, and provide the same level of rigor to be expected in an undergraduate class setting. While I alone am responsible for the hundreds of hours reflected in the finished product of this class (and responsible for the errors), it is the result of collaboration with web designer, Morgan Barker, without her support it wouldn't have gotten off the ground, and the vetting by two fine historians in our department, Thomas Mays and Anne Paulet.
Flipping a U.S. History Course using Peer Mentoring
Abstract:
This project provides a redesign of HIST 202A (U.S. History to 1877) and HIST 202B (U.S. History since 1877), two lecture General Education courses. The redesigned HIST 202A/B takes the form of a modified flipped course, making extensive use of historical sources, activities, and assignments available online at no cost to students. Our redesign also follows a “learning communities” approach. For every class meeting, faculty create small-group learning opportunities that feature collaborative learning and scaffolded skill-building. Student skill-building areas emphasize source analysis, thesis identification, note-taking, academic writing, and reading. The professor's work with the small-group learning communities is assisted by specially-trained advanced students acting as peer mentors or "facilitators." By cultivating academic skills and personal relationships, our redesign promises to promote student motivation, retention, and academic performance, as well as to cultivate key academic skills students need to succeed later in their college careers.
DS 71 Quantitative Analysis with Online Quizzes and Tutoring
Abstract:
We have designed and developed practice quizzes using nearly 400 questions that help students master concepts necessary to achieve student learning objectives in a quantitative analysis course. The quizzes can be taken as many times as needed with different questions in each quiz. We believe student engagement is enhanced and learning improved and will testing this hypothesis.
Abstract:
Calculus I at SDSU is taught in large, 125-175 student lecture sections with smaller break-out sessions once per week. The current D/F/W rate has averaged around 30%, which we find to be unacceptable. The reasons for this rate are numerous, and differ from those that cause students difficulties in other classes such as Calculus II. In general, research has shown that these students are encountering new ideas that require conceptual understanding and visualization skills, which demand new types of studying methods and content presentation. We are trying four specific interventions: Peer tutors, Client-discipline Projects, interactive technology, and Weekly analytics reports.
Abstract:
I am taking a course in which I usually teach 35 students and converting it to all online, and I am expanding it to up to 200 students. My goals are to retain or improve pedagogical success rates, reduce the DWF rates in my course, sustain a high level of philosophical rigor, liberate the course from a fixed meeting time and space, and allow somewhat asynchronous and independent work by students through the online format.
Flipping PHYS Mechanics & Wave Motion with Online Homework
Abstract:
As an instructor for fundamental physics since 2007, I encounter students with very different background. Most of them are just graduated from high schools, who choose engineering or science as their major but not even have enough Mathematics skills or good study habits. Over the years I have seen ~20-35% failure rate (DFW grades) in my class (depending on semesters), not only students feel frustrated, I am quite stressed by the result. The purpose of this project is to decrease the gap between students and increase student success rate in my PHYS 4A/Mechanics and Wave Motion course. Particularly, I am adapting smartPhysics, which has well built prelecture activities and online homework system, so that I can increase class practice for students to work on examples and perform more demonstrations in class meeting time.
Abstract:
The redesign of POLS 421: Methods of Political Inquiry will be crucial in meeting the upcoming needs for an upper division social science statistics course. Currently the course is able to meet the needs of the approximate 25 Public Administration students in the fall semester who need the course for their major, but beginning in AY 2014-15 all Criminal Justice students (approx. 500 majors) will be required to take POLS 421 as well. POLS 421 will be redesigned using a ‘flipped’ model (e.g., primary instruction occurs online prior to class attendance).
Science using Flipped Classroom and Adaptive Learning Homework
Abstract:
Science 120 was taught as a pilot course for two years, and 2014-2015 represents the first year that the course has been approved for permanent status in the university catalog. Instructors from Mathematics, Physics, and Biology work together to deliver a curriculum that promotes student engagement and teaches the practice of science, while delivering content in Mathematics, Critical Thinking, Biology and a laboratory experience. The purpose of the redesign is to improve the course and to teach it more efficiently, as we eventually plan to scale up from 60 to 100 students each year.
Abstract:
The redesigned version of Biology 101 online was offered in Fall 2014. The main focus is to increase student persistence and thereby increase the student pass rate. The redesigned course attempts to a) increase student engagement with the course material, b) give students more guidance on learning the required material, and c) identify struggling students and offering assistance. I have compared the pass rate of students who took the class online from prior semesters to the percentage of students who passed the course this semester.
Abstract:
This project seeks to redesign the Biology 1BL Lab course, which is part of the Introductory Biology sequence for Biology Majors, to incorporate more active-learning modules in combination with computer simulations to effectively engage students. Our goal is to increase student success within this class and help prepare students with relevant laboratory skills, a proper conceptual framework, and effective learning strategies to improve their progress throughout the Biology major.
CHEM 316-17-18 Using Online Homework and Active Learning
Abstract:
Organic chemistry is typically taught via the "functional group approach" that mirrors neither the way organic chemists think about their subject nor accounts for the developing intellectual requirements of the field. We have deconstructed the topics in organic chemistry into three broad categories: structure, mechanism, and synthesis. With an emphasis on making parallel the rigors of the material with the intellectual development of the students, we anticipate both an increase in student success and retention and mastery of the material.
A Chemistry Course for Engineers with Online Resources
Abstract:
Chemistry 1E, General Chemistry for Engineering Students, has been designed to meet the chemistry content needs of engineering students. Material is taught using engineering examples and applications, making the material more relevant to the students served by the course. The course has been reduced to 4 units (3 lecture and 1 lab), thereby reducing the unit requirement of the unit heavy major. After the first offering, access was improved with more students served earlier in their undergraduate careers and a significantly improved course pass rate was observed compared to previous engineering student pass rates in traditional general chemistry. The bottleneck in the traditional general chemistry sequence was additionally reduced by removing the engineering student demand on that sequence.
Abstract:
In this project, incorporated a competency exam during week one with content from organic chemistry. Students with poor performance on this exam were enrolled into supplemental instruction so that their deficiencies could be addressed. The passing rate of SI-enrolled students were compared to that of non-SI students. The overall outcome of this course was compared to that for an identical course taught in spring 2012 in which no SI was available.
Abstract:
This project employs an interactive online textbook with video lessons imbedded throughout the chapters in order to create a hybrid course where students meet in the classroom far less regularly than they would in a traditional course. Students work in small groups or independently in order to master the skills of public discourse: oral, face to face, public communication. At first, it seems counterintuitive to attempt to teach such an immediate skill through increased mediated lessons. But we discover a variety of advantages to this model; and we also face -- honestly and squarely -- some of its challenges.
Abstract:
Learning how to program a computer is of increasing importance to students from many majors, but it is an intellectually demanding activity. San Jose State University has limited capacity in offering the “Introduction to Programming” course on campus and is unable to keep up with demand. After a largely successful experiment of offering the course as a MOOC through Udacity in Summer 2013, we are offering it as a “SPOC” (small private online course) in Spring 2014. We are adding more practice and interaction to the online course, aiming for having parity in pass rates and student success between the online and regular offering.
Abstract:
Circuit analysis is a core course for most engineering disciplines. This Proven Course Redesign project aims to improve student progression though the course while simultaneously reflecting the various discipline flavored perspectives. The course uses a combination of locally created materials and the MIT 6.002x course delivered by the edX platform. Locally created materials include videos that present problem tutorials, lectures, and online assessment.
Abstract:
Student success in the World Civilizations sequence, a universal lower division general education requirement across the CSU, is key to higher graduation rates and timely degree completion. This redesign makes the sequence accessible for diverse learning strengths and unpredictable schedules using an online module based on team-based learning approaches and the integration of digital tools. The content is equal in substance to a traditional onsite course, while addressing the unique possibilities of online environments.
Business Math Using ALEKS Hmk and Supplemental Instruction
Abstract:
One of the major tasks in this project is adapting a course developed on a semester-based campus (CSUN) to one on a quarter-based campus (CSUEB). We will also need to modify the lecture notes to fit our syllabus. Besides adapting CSUN’s Math 103 materials (textbook, lecture notes, workbook, Webwork problems), I am trying to integrate one of CSUEB’s recently-created Institutional Learning Outcomes of promoting diversity and social justice into each course.
Abstract:
This project sought to strengthen the achievement of students enrolled in high-impact mathematics courses. While SI is targeting key courses rather than particular groups of students, a secondary benefit of SI was to help reduce the achievement gap between groups of students who have traditionally been underrepresented in the STEM fields.
Abstract:
This project aims to improve student learning in CSUF's introductory, calculus-based mechanics course, a "bottleneck" course primarily taken by engineering and physics students. Rather than a traditional lecture+textbook format, the redesigned course implemented active learning strategies and a flipped classroom model of instruction using the SmartPhysics platform. The course also incorporated supplemental instruction.
Abstract:
Flipped classroom is the pedagogy behind the redesign of these two courses, which can also be tailored to a Hybrid-online format. Students watch, listen, and interact with online content on their own time and come better prepared to take more active roles in class discussion, group work, and problem solving practices. The method allows instructors to use the precious class-time for more demanding cognitive tasks: tackling difficult problems, working in groups, peer instruction, researching, collaborating, crafting and creating. We utilized SmartPhysics multimedia online course content developed at the University of Illinois.
We compared the learning, attitudes, and experiences of students in flipped classes with the traditional lecture sections in a controled research study. Our research indicates that students in the flipped class overall did better than control group. In addition, student attitudes regarding the course and online material were very positive. They enjoyed the flexibility associated with the online prelectures, felt they were easy to use, and found presentations and the examples to be effective in helping them to learn physics.
Abstract:
This program is part of a national American Democracy Project (ADP) initiative incorporating public sphere pedagogy to improve academic success for students enrolled in POSC 100, Introduction to American Politics. Students work in teams of 6-7, researching public affairs issues during the semester, culminating in a Town Hall Meeting event each semester. The THM will be led by the student teams, involving other students, university faculty and administrators, and government, non-profit, and business leaders. By engaging students in active learning, focused on an exciting cumulative event, the THM is aimed at increasing student success in the POSC 100 course: reducing repeatable grades, and increasing overall interest in public affairs and civic engagement.
Abstract:
Abnormal Psychology was redesigned from the traditional in-class format to be delivered online. In the redesign, all of my lectures that I typically give in class were recorded. I also have live sessions via BlackBoard Collaborate to highlight challenging material and field questions. Additionally, I collaborated with McGraw-Hill and incorporated their online learning tools into the course. Additionally, each student is assigned to view case studies of real people with psychological disorders and complete a quiz on each. The online design is meant to provide a more intensive learning experience, where students must read their textbooks (well in advance of exams) in order to complete the assignments.
Abstract:
During Fall 2014, we will offer the redesigned version of Biology 101 online. Our main focus is to increase student persistence and thereby increase the student pass rate. The redesigned course attempts to a) increase student engagement with the course material, b) give students more guidance on learning the required material, and c) identify struggling students and offering assistance. We will compare the pass rate of students who took the class online from prior semesters to the percentage of students who pass the course this semester.
Biol 1403 Using High Impact Pedagogy and Active Learning
Abstract:
To address the General Biology bottleneck at California State University, East Bay (CSUEB), an interdisciplinary team of faculty members representing Biological Sciences, English, and the University Libraries are redesigning one highly enrolled foundational biology course for majors (BIOL 1403, Animal Biology) which has both lecture and laboratory components. This course, which involves an examination of basic concepts in biological diversity, animal anatomy and physiology, and species interactions, is the first of three “first-year” Foundations of Biological Sciences courses required first-time freshman biology majors, the preliminary target group for this initiative.
Abstract:
By making my class online, I am addressing the enrollment bottleneck of this General Education class. Any given quarter most classes are full to capacity, with many students still trying to add the course. With sufficient rooms available, there may be 1200 students enrolled each quarter. With an increasing student population space is always a concern. We frequently teach in rooms that are part of other colleges, so the reliability of those rooms being available is another concern. By making a course online, more students will be able to take the course without taking up classroom space. This is also beneficial for the students, many of which have work or family commitments, and for whom meeting regularly at a particular time may be inconvenient or impossible.
Abstract:
Human Anatomy (BIOL 208) is a non-majors course with an annual enrollment of 700-800 students. For many of these students, this rigorous class represents the first science course they have taken since high school, and many are not accustomed to the level of rigor anatomy requires. Our restructure is focused on making the course an interactive learning experience. We have removed the hour-long lectures that accompanied the laboratory portion of the class and replaced them with a three part learning system: 1) multiple short videos describing every anatomical part students need to know*, to be watched at home, 2) a readiness assurance quiz each week on both review and new material covered in the videos, but not in class#, and 3) in class interactive laboratory stations where students use critical thinking and inquiry skills to investigate anatomical materials and make key learning connections#. These techniques have decreased the number of D grades and increased student understanding beyond the rote memorization typically associated with anatomy.
Integrating Writing Into an Online Business Course
Abstract:
IBUS 330 is a three-credit, upper-division core course for the BSBA degree and a prerequisite for all advanced International Business courses in the major concentration. In addition to providing an introduction to the field of International Business it also includes a major emphasis on culture. As a part of a multi-year process of continual development and improvement, the current course redesign of the writing component specifically addresses a major problem and criticism of online courses; namely, the lack of any significant writing component in the curriculum. This report details the continual development of writing as well as four other course enhancements to overcome five problems commonly associated with online course delivery.
Flipping Economics: Modeling, Mapping and Scaffolding
Abstract:
This course redesign focuses on modeling, mapping, and assignment sequencing as a way to move beyond learning thresholds in economics. The modeling-mapping-scaffolding approach is designed to improve economic reasoning abilities, which are a barriers to writing proficiency and quantitative literacy, especially in large class settings. It will also incorporate both writing and technical peer facilitation/instruction. ECON 303 already employs flipped classroom instruction. The active learning activities will now be centered on problem solving, modeling, and mapping and the assignments will build on each other.
Abstract:
Our long term goal is to design a STEM First Year Experience (FYE) learning community for at risk students with an identified interest as a STEM major. Our approach is to use cross disciplinary learning modules on regionally relevant issues as the core of our FYE learning community that will build the foundational critical and quantitative thinking skills required for success in typically high-failure rate STEM gateway classes including CHEM 1A and BIOL 1A. Technology will be used to facilitate timely peer-review, included community professionals in class discussions, and reinforce skills with supplementary videos.
Abstract:
CSULB Department of Chemistry and Biochemistry launched CHEM 324 in Fall 2013 to create additional opportunities beyond lecture for small group discussions and problem solving, as well as implementing a flipped technology classroom format to engage students in an active learning environment. The redesign plan is to engage students with the material and with each other as much as possible, while using flipped technology to provide affordable learning solutions to reinforce course content.
Abstract:
This redesign was undertaken to create a dietary self-assessment assignment that would streamline the grading process. While each dietary analysis was unique to each student, in depth grading of their accuracy was replaced in part by short case studies linked to automatically-graded online quizzes. Supplemental learning materials were developed to utilize the US Department of Agriculture (USDA) free SuperTracker dietary assessment tools. Steps were also taken to increase student success in this hybrid format course.
Abstract:
The COMP 110: Introduction to Programming and Algorithms course redesign involves the gathering and development of online web-based study materials for use by students to review fundamental programming concepts. Additionally, it involves the usage of the YouSpeak mobile and web-based classroom participation tool in class. YouSpeak provides students with an alternative/additional channel to participate in class. The software, developed at CSUN, allows students who may (on occasion or consistently) be too shy to speak out load an alternative. Students can ask questions or make comments by writing out their questions through the YouSpeak system on their smart phones or laptops. The questions then appear projected on the screen alongside the lecture material for all to see.
Flipped Asynchronous Course Redesign in Critical Thinking PHIL 102
Abstract:
PHIL 102 is an A3 general education course, which is widely regarded as a "bottleneck" because of its high repeatable grade grate. This project invovled a series of course redesign strategies aimed to improve student success in the course. The first redesign attempt utilized a hybrid format. The second redesign attempt utilized a hybrid format combined with asynchronous learning. The third redesign attempt utilized asynchronous learning in a face-to-face format. Results suggest that asychronous learning in a face-to-face format improves pass rates and mastery of course learning outcomes, while the hybrid format both with and without asynchronous learning lowers pass rates. Project results also suggest that pass rates stablize regardless of class size.
Flipping Digital Engineering Using Project-Based Learning
Abstract:
To stimulate the students’ interest in engineering and enhance their design skills, EE244 has been redesigned using Collaborative Project-based Learning (CPBL) pedagogy. CPBL employs a variety of instructional strategies for effective content delivery and to support differentiated learning. In the redesigned EE244, 40% of the class time is dedicated to lecturing, and the rest is used for various active learning components including interactive/collaborative problem-solving, inquiry-based activities, hands-on design projects, direct assessment, etc. Multi-year assessment data consistently shows that CPBL has a very positive impact on students’ learning outcomes and increases their interest in engineering field
Pre-Calculus (Math 130) Course Redesign with Online Homework
Abstract:
By redesigning lecture materials, lab activities, and homework assignments, we will increase student knowledge and deepen their understanding of course concepts. Our goal is to improve course pass rates and to give students a solid foundation to support subsequent Mathematics courses.
Calculus I Redesign with Supplemental Instruction and ALEKS
Abstract:
We have chosen a two-pronged approach to improving student achievement in Calculus 1. First, we offer a preparation for calculus course through the ALEKS system for students to complete within the first six weeks of the semester. The course is designed to refresh and improve students’ prerequisite knowledge. Secondly, throughout the semester, we offer students to participate in Supplemental Instruction for two hours per week.
Flipping Electricity and Magnetism with Online Homework
Abstract:
At Cal Poly Pomona, introductory physics classes are taught through 3-unit lectures and 1-unit lab. There is no recitation section to allow students for more practice with the instructor. Such lack of practice adversely affects student learning in all introductory classes including PHY 133, which is a calculus-based course on introductory electricity and magnetism. Flipped classroom approach has potential to remedy the situation. By moving most of the lecturing to online vewing of materials along with questions answered ahead of the lecture, the instructor can plan the class time for many other activities, such as more in-depth conceptual questions, comprehensive lecture demos, and problem solving. One other aspect of the project is that most of the assessments are done online. Homework is done online at smartphysics.com, and 4 midterms are given on Blackboard. I believe that frequent assessments ensure more regular study of the material to improve student learning.
Abstract:
In this project we redesigned the online Title 5 course to allow multiple sections to share online content, freeing faculty to work more closely with students. The class was built on the Moodle 2 platform, utilizing publisher course packages (online textbook and ancillaries), individualized faculty lectures using the TED format of multiple talks under 18 minutes each -- maximizing viewer receptiveness and cognition, posted lecture outlines, and iterative assignments and exams allowing students to lay a meaningful theoretic foundation upon which they can scaffold layers of content knowledge. Because the course content is developed and posted prior to the semester and shared between multiple sections, faculty are freed to engage students directly in discussion forums and through individualized interventions as appropriate to individual student performance. The resulting learning environment leverages individualized faculty engagement and encourages differentiated learning. The net effect will be to reduce the number of sections needed while increasing the capacity of faculty to work closely with students at risk. All materials and interactions are ADA compliant.
Childhood and Society Using Supplemental Instruction
Abstract:
This project was developed to increase access to online courses in sociology. Additionally, the course goal included decreasing repeatable grades and improving online course design through aligning student learning outcomes (SLOs). We found the redesign was successful in regard access to online courses (increase course caps by 40%, decreasing repeatable and providing highly engaging course materials and technologies.
Psychobiology (PSY 241) Through Supplemental Instruction
Abstract:
Psychobiology (PSY 241) is a course designed to introduce students to the biological and chemical basis of behavior. Our redesign effort has involved a full needs assessment during the Fall 2013 semester across several sections that focused on examining the characteristics of students who successfully completed the course versus those who did not. Based on this assessment we implemented an initial course redesign in an oversized section of PSY 241 during the Spring 2014 semester that centered on structural and instructional course modifications designed to increase student engagement. A full assessment of these course redesign activities was conducted and a final course redesign launch will take place during the Fall 2014 semester.
Abstract:
An interdisciplinary team of faculty are collaborating to redesign two frequently offered, heavily-enrolled non-majors’ biology courses: Biology 1001, Introduction to Biology lecture, and Biology 1002, Introduction to Biology Lab/Activity section. These two biology courses primarily serve students fulfilling their lower division GE science (lecture and lab/activity) requirement. As is typical with science GE courses, students taking these courses show a wide range of scientific literacy and confidence in their scientific knowledge. This, in addition to large class sizes, non-coordinated laboratory instructors, non-alignment of lecture and laboratory, and curriculum consisting of didactic presentations and canned labs exercises, comprise just some of the challenges inherent to this course. The redesign of this course will address these and other issues and will result in greater engagement and learning in the courses, greater connection of the course material to the world and daily life, increased interest in STEM-related courses and fields, improved critical thinking, greater information literacy in the sciences, and improved reading and writing skills. These courses serve over 600 CSUEB students each academic year (AY) and a minimum of 150 students every quarter, and, thus, their redesign will have a significant impact on a large number of students.
Abstract:
FRL 300, Managerial Finance I, is the first of the two-course sequence in finance for College of Business Administration undergraduate majors. It is a quantitative and learning-by-doing course. Due to its technical nature and requirement on prior knowledge of accounting, algebra and statistics, it historically has a very higher repeatable grade and has been identified as a system-wide bottleneck course. This project proposes to add more eLearning and technology components to the course, such as online videos, partial-flipped instruction, CONNECT online homework, calculator emulator, and iClickers to help students better prepare for the course, devote more class time to problem solving and class discussions activities, in order to improve student success.
Active Learning in an Integrated Lecture/Lab Environment Chemistry 128
Abstract:
This redesign is a multi-faceted approach to improve student success and persistence in our general chemistry sequences. The cornerstone of the project is the movement of most of our general chemistry offerings into an integrated lecture/lab environment that we call the studio. The new instructional mode allows us to provide a more streamlined curriculum and provides opportunities to introduce additional opportunities for ongoing formative assessment and feedback to improve student performance. This includes the incorporation of trained upper-division students called “Learning Assistants” who act as a more knowledgeable peer and can offer students immediate feedback in person. We are also creating new software tools that allow students to get immediate feedback on course activities in real-time during class as well as outside of the classroom. Additionally, we are re-streaming the populations in the course sequences to consolidate students with similar needs and interests and redesigning the curriculum to meet those needs.
Adaptive Online Homework Learning System in General Chemistry
Abstract:
The online homework system ALEKS is employed in hopes of increasing student success in a first semester General Chemistry course, in response to traditionally high D/F/WU/W rates amongst at risk students. "At risk students" are defined as those students with low diagnostic placement scores, those repeating the course or those with a low grade in the department's prep-chem course. The current online homework system shows poor correlation between homework completion percent and overall success in the course. A side by side comparison of two lecture sections, one using the current homework system associated with the text and the other using ALEKS will be made to assess the effectiveness of an adaptive online learning system which individually customizes the time-on-task learning experience for each student using periodic assessment and active problem-solving. The homework contribution to total course points will be the same for both sections, as will be required to meet weekly due dates with topics matched to the lecture/lab curriculum. A complete report on student outcomes for both sections will be reported at the end of the semester.
Abstract:
Supplemental Instruction, a peer led small model developed originally at the University of Missouri, Kansas City, will be added to two Organic Chemistry I. Supplemental Instruction or SI has a proven track record of improving student learning in difficult courses as evidenced by higher GPAs by students who regularly attended SI sessions at various Universities including our sister campus CSU Fullerton.
Abstract:
We are using an online MOOC from Coursera for the course content. We spend the class time doing exercises and examples. The class meets twice a week. Each class has two quizzes, one at the beginning and one at the end.
Abstract:
This course serves as apre-requisites to many important senior-level ME core courses in the curriculum such as Mechanical Vibrations, Mechanical Measurements, Control Systems, and Acoustics and Noise Control. Failure of this course will impede students' educational path towards graduation. It is observed that students often have a hard time visualizing abstract concepts.This course is mathematically intense, and thus create additional challenges. The objective of this proposal is to enhance students’ learning through use of simulation software and technology to assist students in understanding and visualizing course concepts, and thus to shorten time to degree and increase graduation rate of Mechanical Engineering students.
ENGR 17 is a gateway (bottle neck) course to upper division for engineering students. The course has been taught in the traditional format. The course was first redesigned base off of the edX MOOC, this lead to a hybrid flipping the course, online assignments, practice problems, and online exams. These changes increased student engagement through new course activities and in-class / online discussions.
Abstract:
The purpose of this project was to compare student learning outcomes from the Virtual Exercise physiology lab with that from traditional exercise physiology laboratory activities. Student participants from the spring 2015 Exercise Physiology course were randomly assigned to either experimental group 1 or group 2. Group 1 completed traditional laboratory activities, whereas group 2 completed the Virtual Laboratory. Both groups then completed the same assessment to evaluate their understanding of Aerobic and Anaerobic Power laboratory concepts. Mean Aerobic Power Lab activity assessment scores were 80.5 ± 5.5 and 80.6 ± 6.7 and mean Anaerobic Power Lab assessment scores were 81.5 ± 8.0 and 82.0 ± 6.4 for groups 1 and 2, respectively. In this investigation, 50% of the students indicated a preference for the traditional laboratory activity, and exact half percent of the class either actually preferred the Virtual Exercise Physiology Laboratory program (28.9%) or did not prefer one laboratory type over another (21.1%). Students agreed that the Virtual Exercise Physiology Laboratory program was at least moderately educational (21%), but most students thought that the Virtual Exercise Physiology Laboratory program was very educational (78.9%). These findings support that virtual laboratories instruct students as effectively as traditional laboratories
Abstract:
This redesign made use of the Adobe Captivate 7 (eLearning development software) to create 7-12 minute modules for student engagement prior to class. Students are able to access the modules through iOS mobile devices and personal computers. Each short module presented one topic only related to the necessary mathematical background knowledge needed to solve problems presented in the next class period. Each module contained interactive examples and quizzes with immediate feedback. Upon entering class, students are required to turn in a daily "Ticket-In-the-door" that reflects and summarizes the online module. Class time now is less about lecture and more about student led discussion. Students are no longer struggling with keeping up and writing notes but rather involved with solving one or two mathematical problems together. This leads to the important feature of this environment. The flipped learning environment allows the instructor to walk around the classroom, check for understanding and provide students, especially struggling students, with a personalized learning environment.
Abstract:
The goal of the redesign project is to increase student engagement in the learning process by fostering an interactive learning environment through the use of an integrated teaching delivery system using slides, interactive notes, and i>Clickers. A main component of the redesign is the incorporation of a set of deliberately incomplete class notes that mirror the lecture slides prepared by the instructor. Gaps have been left in the notes, mainly in examples, and are to be filled in by the students during the lectures. The notes eliminate the need for students to hastily copy lecture notes and instead increase their concentration on the material being taught.
Transforming Calculus-Based Physics with Supplemental Instruction
Abstract:
Our traditional calculus-based mechanics course, taken by some 400 science and engineering majors each semester, had not been significantly changed in several decades. In order to improve student outcomes, we have been converting the course such that (a) there is excellent coordination across sections, (b) there are on-line resources for students to use outside of class, (3) there is more interactive learning and student group work in the labs than before, (4) there is in-person tutoring and exam preparation available, and (5) there is an additional support course for students not yet ready for Physics 50. The project is a collaboration between teaching faculty, physics education researchers and masters students studying student learning.
This course is a Psychology major upper division core course. All Psychology students are required to take this course. In general, Psychology students are not excited to take this course and find statistics extremely difficult. The vast majority of students do not have calculus experience. Many of these students are not confident that statistics will be useful in their desired career. One hypothesis is that undergraduate students view statistics largely as a set of disparate quantitative formulas. Perhaps the solution is to teach statistics in a way that emphasizes a coherent understanding of introductory statistical concepts.
Abstract:
This is a one unit General Chemistry Lab for non-science majors that is offered online. The course requires students to run eleven virtual labs offered by external vendor, Latenitelabs.com and submit lab reports online. Students ‘enter’ a 3D portal that is representative of the actual lab space and use virtual glassware, instruments and chemicals which resemble the actual lab materials. The Lab requires physical class participation three times during the semester where students come to campus for a three hour Lab lecture sessiom. Students have the opportunity to ask questions and learn how to do the online experiments using Latenitelabs tools, learn how to obtain relavant data to prove hypotheses, analyse results, perform calculations, and discuss how their observations and methodologies help achieve the goal. During Lab lectures, Students are tested on the Chemical principles, protocols, data collection, analyses, calculations and error sources etc with the aid of hand-written exams. Assessment of student learning shows that this method is equally efficient in teaching students the theory and methodology of Chemistry Labs.
General Biology Redesign using Recorded Videos and Online Homework
Abstract:
In order to better understand the impact of course redesign elements on student performance in this and future coursework, I obtained Institutional Research Board approval to collect detailed data associated with participating students. The analysis includes three semesters of data from the redesigned course. Conclusions will inform future approaches to instruction in General Biology 1.
Making the Structure Functional using Technology in Anatomy
Abstract:
Functional Human Anatomy is a non-majors course with an annual enrollment of over five hundred students and, at present, no prerequisite courses to prepare the students for the demanding subject matter. Although course redesign was begun over three years ago, there is still a great deal to be done: implement a modified-flipped format in the laboratories (currently in progress Fall 2015), create web-based learning activities to complement the face-to-face components of the course (currently in progress Fall 2015), and record movies to facilitate studying outside of the classroom. In addition, web-based and face-to-face components need to be redesigned to interact pedagogically so that the advantages of both enhance student learning. Recording lectures and anatomy laboratory demonstrations for online dissemination, development of interactive powerpoints in addition to those already in use, and restructuring the course to facilitate transference to the Fresno State tablet initiative are necessary.
Abstract:
Traditionally, this course has a high percentage repeatable grade, F, D and W. CSU System wide has also identified this course as a bottle neck course. A proven course design Supplemental Instruction (SI) will be implemented for the two sections of Organic Chemistry I this Fall Semester 2014. Each section of Organic Chemistry I will be assigned one SI leader and the SI leader is required to attend the assigned lecture led SI session for that section.
Adaptive Online Homework Learning System in General Chemistry
Abstract:
The online homework system ALEKS is employed in hopes of increasing student success in a first semester General Chemistry course, in response to traditionally high D/F/WU/W rates amongst at risk students. "At risk students" are defined as those students with low diagnostic placement scores, those repeating the course or those with a low grade in the department's prep-chem course. The current online homework system shows poor correlation between homework completion percent and overall success in the course. A side by side comparison of two lecture sections, one using the current homework system associated with the text and the other using ALEKS will be made to assess the effectiveness of an adaptive online learning system which individually customizes the time-on-task learning experience for each student using periodic assessment and active problem-solving. The homework contribution to total course points will be the same for both sections, as will be required to meet weekly due dates with topics matched to the lecture/lab curriculum. A complete report on student outcomes for both sections will be reported at the end of the semester.
Abstract:
CIS405 Database Design and Development is a lecture core for computer information system majors in the computerized classroom. Traditionally the course was taught with database topics with Oracle. The goals of the project are to add data warehouses with SAP ERP business warehouse (BW) in the course. For the redesign project, the lecture is offered face-to-face, but all the course materials will be online for the flipped classroom and remedial purposes. Moodle is used as course platform: (1) to communicate instructions for class activities, including course slides, in-class active learning exercises, and solutions to them (2) to download Oracle and SAP vendors' course activity materials (3) to display student performance progress in the gradebook (4) to submit all assignments and projects prompt feedback online and (5) to host online quizzes and exams. Adding data warehouse and SAP ERP BW to the last three weeks in the quarter makes this technical course very intensive, but students feel they have learned tremendous new knowledge and skills which can get them prepared for their future IT job market.
Abstract:
Microeconomics is a high-demand, low student success, class, as identified by the Office of the Chancellor. A section of the class is being offered as a “flipped class” in Fall 2014 in which the students view videos of the lectures and then come to class to work problems and clarify concepts, before doing team work. The students are "shaken" into learning the content on their own; they then come together and blend in class; later problem sets help to stir and refine the knowledge acquired. Student outcomes from the flipped class alone vs. lecture sections will be analyzed to determine the impact of flipping on student learning outcomes.
Flipping Pre-Calculus (Math 125) with Online Modules
Abstract:
This redesign made use of the Adobe Captivate 7 (eLearning development software) to create 7-12 minute modules for student engagement prior to class. Students are able to access the modules through iOS mobile devices and personal computers. Each short module presented one topic only related to the necessary mathematical background knowledge needed to solve problems presented in the next class period. Each module contained interactive examples and quizzes with immediate feedback. Upon entering class, students are required to turn in a daily "Ticket-In-the-door" that reflects and summarizes the online module. Class time now is less about lecture and more about student led discussion. Students are no longer struggling with keeping up and writing notes but rather involved with solving one or two mathematical problems together. This leads to the important feature of this environment. The flipped learning environment allows the instructor to walk around the classroom, check for understanding and provide students, especially struggling students, with a personalized learning environment.
ME340 Dynamical Systems with Online Homework and Clickers
Abstract:
This course serves as a pre-requisites to many important senior-level ME core courses in the curriculum such as Mechanical Vibrations, Mechanical Measurements, Control Systems, and Acoustics and Noise Control. Failure of this course will impede students' educational path towards graduation. It is observed that students often have a hard time visualizing abstract concepts.This course is mathematically intense, and thus create additional challenges. The objective of this proposal is to enhance students’ learning through use of simulation software and technology to assist students in understanding and visualizing course concepts, and thus to shorten time to degree and increase graduation rate of Mechanical Engineering students.
Abstract:
I propose to integrate computer- and experiment-based activities in these classes. For example, multimedia technologies like the “MasteringEngineering” will provide students with tutorial homework problems to emulate the instructor’s office-hour environment and provide feedback specific to their errors. Additionally, I will design experiment-based assignments, so students, through interaction with physical models, will significantly enhance their understanding and retention of topics presented in the course.
Abstract:
The goal of this project is to provide an interactive platform for learning about scientific worldviews by: 1) Understanding and applying concepts in the philosophy of science; 2)Evaluating empirical support for scientific case studies by analyzing the scientific methodology behind those studies; 3) Understanding and evaluating the historical progression and difference between distinct scientific worldviews, including the Newtonian and contemporary worldviews associated with quantum and relativistic physics and evolutionary and neurobiology; 4) Extrapolating some of the implications of science and changing worldviews for Moral Theory and Moral Psychology. The interactive platform will address 2 components: lecture module and interactive animation/experiment. The former is a structured, edited Camtasia or video presentation of lecture material. The latter is an experimental method to engage students by working together with the instructor in order to generate ideas for animated lectures. The students will suggest concepts, themes, and empirical examples as well as the organization style for the animated lecture.
Learning Assistants to Flip Introductory Physics at CSU Sacramento
Abstract:
In 2011 we started a program on our campus aimed at improving student success in STEM disciplines through a flipped classroom facilitated by Learning Assistants (LAs). Currently more than 400 students and 30 learning assistants benefit from the program every semester. Last year's eportfolio presents preliminary statistics. We applied for a second year grant with two main goals. Goal number one is to continue to improve and carefully grow the program by supporting faculty and LAs. The second goal is to build a learning skills website to provide resources that can help students improve their metacognitive skills, and learn how to learn. The LAs become better learners for participating in the program, and we want to extend these benefits to as many students as possible.
This project sought to reduce the proportion of repeatable grades (D, W, F) in an upper-division Theme 3 course. I am redesigning social psychology online to improve the universal design components in the course. I will incorporate auditory and visual instructional strategies via short videos. I am in the process of filming the videos to highlight course material and theories.
Flipping Stats-Online Lectures and Supplemental Instruction
Abstract:
Stat 250 is a general elective introductory statistics and data analysis course for students throughout the sciences, social sciences, health and human services, and business. This course redesign develops a flipped classroom format whereby students learn core statistical concepts in online videos created by the instructors and participate in computer data analysis labs and directed problem-solving discussions. The aim of this approach is to teach statistics by doing, internalizing key concepts in experimental design, data collection, and analysis as well as statistical communication and assessments through an active classroom learning environment. The ultimate goal is to scale this effort up to all introductory statistics courses taught on campus, through online core concept lectures and subject-specific data analysis/statistical problem solving laboratories.
Abstract:
The Virtual Lab for Electricity and Magnetism is enhanced through team-based learning, which is an essential part of laboratories. It is based on an inexpensive (~$60) home kit and Koondis (social networking platform for small cooperative teams). Students collaborate in small teams of 4-5 members to perform "3D Labs", 3D = design, discover, and discuss. The experiments are not rigid, allow for openess and lead to discovery. The experiments are designed, approved, documented, peer evaluated, and shared through the collaborative Koondis online platform.
Using Clickers to Engage a Large Lecture Organismal Biology Course
Abstract:
BIOL 201 (Biology of Organisms) is the second course in a three-course sequence required for Biology majors. It is a large lecture class (230 students) with multiple lab sections. Formative assessments play a critical role in informing instruction. However, the large number of students in classes such as this limits opportunities for giving traditional formative assessments (quizzes, student-teacher conversations, etc.), hence limits the instructor's ability to gauge student performance. This course redesign project is aimed at evaluating several modes of formative assessment with the goal of providing feedback on student readiness at critical juncture points of instruction.
Abstract:
BIOL 361 at California State University, Fullerton (CSUF) is taken by Biology majors and other students preparing for health professions programs and has an annual enrollment of 144-200 students. Most students who enroll in this course are interested in a health professional career; they must master gross anatomy, anatomical structures and landmarks, and be able to think critically to answer clinical application questions. The laboratory component of the course is designed to integrate hands-on exploration of anatomical landmarks and dissection; however, students struggle to link the material learned in lab (based on cat dissections) to their own bodies. The restructure of the laboratory component of BIOL 361 is focused on incorporating two human cadavers to promote student understanding of the location and structure of human anatomical features and on developing a more interactive approach in which students use virtual 3D materials from home to help them study and reduce dependence on text-only learning. Students quiz themselves prior to the class meeting, allowing better use of in-class time for learning anatomical principles, hopefully leading to improved student success. In the lecture component of BIOL 361, case studies and real world experience (guest speakers) were added to develop students’ ability to apply the material, to think critically, and to make links between lecture and laboratory components.
Flipping an Operations Management Course Using Clickers
Abstract:
My primary focus was to redesign my course to offer a "flipped class" to my audience. In the process the learners will watch the weekly topic related videos, watch power point slides, read articles related to the topic on line, on their own time, finally take an online quiz on the weekly topic before they came to class. The plan is to spend less time lecturing, do more in class activities such is group work, discussion on topics, use more technology and thus allow more flexibility to my students. I am anticipating that in this way students would come more prepared to classroom and will be open to participate in the critical thinking and the process should allow them to enhance their problem solving skills. If I reduce class lecture time and significantly increasing student interaction, I strongly believe that students of this generation would be more engaged, be interested in the weekly topic and enhance and meet the over all the students learning outcome.
Abstract:
In AY 2013-2014, we redesigned CSUF's second semester General Chemistry course, CHEM 120B, which includes concurrent lecture and laboratory components. Serving as a required pre-requisite for Chemistry, Biochemistry, and Biology majors, as well as for many other students pursuing career paths in the health professions, total course enrollment is limited by a lack of space and materials in the laboratory component. Additionally, the course had a high average failure rate (C- or lower) of 23% due to what we suspect are poor topical parallels between the laboratory and lecture lessons. Our redesign of the course involved a complete rewrite of the laboratory portion of the course, which included the incorporation of a virtual laboratory component to complement the students’ wet lab experience. The pilot year of our redesign proved successful in increasing the average passable rate of the course, and so we were granted additional support funding to continue our work.
Hybrid and Flipped: Using Affordable Tech in Principles of Econ
Abstract:
I will use the hybrid model to make a more robust at-home learning experience for students. Using Macmillan's Launchpad site and FlipItEcon videos and assessment we will implement and test the evidence-based practices of multimedia learning, low-stakes adaptive quizzing and interleaved retrieval practice to encourage and reward mastery by lowering the cost of trying and failing.
Modeling and Simulation of Dynamical Systems ME 340
Abstract:
This course serves as a pre-requisite to many important senior-level ME core courses in the curriculum such as Mechanical Vibrations, Mechanical Measurements, Control Systems, and Acoustics and Noise Control. Failure of this course will impede students' educational path towards graduation. It is observed that students often have a hard time visualizing abstract concepts.This course is mathematically intense, and thus create additional challenges. The objective of this proposal is to enhance students’ learning through use of simulation software and technology to assist students in understanding and visualizing course concepts, and thus to shorten time to degree and increase graduation rate of Mechanical Engineering students.
Redesign Math 30/40 Intermediate Algebra with Active Learning
Abstract:
We cover the material in Developmental Mathematics with a different pedagogical approach that includes less time lecturing and more time on small-group work. Students work and collaborate to complete worksheets that seek to address foundational deficiencies in a more global approach.
Abstract:
This course traditionally has a very low success rate and acts as a bottleneck for the academic programs of students in STEM fields. It is taught each semester in 10 or so small sections, and we do not have a departmental mandate to impose pedagogical changes within the classroom We do have historical data that identify studenst as ``at risk" based on past courses and exam scores. We aim to increase student success through a coordinated combination of online homework sets, weekly remediation for the at-risk students, and milestone examinations.
Flipping Vector Dynamics Using Simulations and Videos
Abstract:
Dynamics is a foundational course for almost all engineering students. We deal with over 600 students from various engineering majors take this class every year with a high failure rate. Our objective is to improve student learning and their performance by using a redesign strategy that would provide more and better opportunities for students to learn. Our approach for redesign integrates technology and pedagogy. Our redesign strategy incorporates all the best practices we have developed in our earlier course redesign projects. Specifically our redesign course structure includes, 1) short introductory video discussing the relevance and application of a concept, 2) practical examples, 3) in-class discussion on concepts and examples from the video, 4) Simulation/Experiments, and narrated examples & derivations (longer videos).
Abstract:
The project is aimed at integrating an effective learning tool, the Koondis platform, into STEM education - in this case in physics and chemistry. The Koondis platform (learn.koondis.com) is a structured interaction which automatically creates "select teams" (the Estonian term is a "koondis") for STEM students with specified roles. While the tool can be used in a variety of ways, an effective introduction into building a Koondis structure in a course is to use it as a homework "sandbox". We describe the results of rewarding students for effective teamwork and leadership in their Koondis in this ePortfolio.
Pickett, Galen; Gredig, Thomas; Hlousek, Zvonimir; Lopez, Marco
Abstract:
In 2011, we started a program on our campus aimed at improving student success in STEM disciplines through a flipped classroom facilitated by Learning Assistants (LAs). Currently more than 400 students, and 30 learning assistants benefit from the program every semester. The results are impressive (statistics are provided in last year's eportfolio), and at the end of every semester we hear raving praise for the program from students and LAs. One of the goals of this proposal is, of course, to continue to improve and carefully grow the program by supporting faculty and LAs. At the end of each semester, the learning assistants frequently comment on how much better learners they have become through the program, and we often wonder how to extend these benefits as to reach all of our students. Our second goal in this proposal is exactly that: to build a learning skills website to provide resources that can help students improve their metacognitive skills, and learn how to learn. We are creating tools that students can freely access, as well as activities that can be assigned to students by any faculty member teaching a STEM class. Students will be able to document their work and turn it into their instructor for extra-credit or participation points. The website will also contain selected links to external resources; and a few short videos where we model a productive and reflective dialog between four students. In BIO2, we assessed a specific metacognitive activity, provided to students as an optional assignment at the beginning of the semester. Results from that study and samples of curriculum from our flipped course are provided on this website. We further show data indicating that students perceive the curriculum, including the use of Learning Assistants, as beneficial to their learning and engagement.
Flipping a Principles of Microecon Using Active Learning
Abstract:
My primary focus was to redesign my course to offer a "flipped class" to my audience. In the process the learners will watch the weekly topic related videos, watch power point slides, read articles related to the topic on line, on their own time, finally take an online quiz on the weekly topic before they came to class. The plan is to spend less time lecturing, do more in class activities such is group work, discussion on topics, use more technology and thus allow more flexibility to my students. I am anticipating that in this way students would come more prepared to classroom and will be open to participate in the critical thinking and the process should allow them to enhance their problem solving skills. If I reduce class lecture time and significantly increasing student interaction, I strongly believe that students of this generation would be more engaged, be interested in the weekly topic and enhance and meet the over all the students learning outcome.
Abstract:
Organic chemistry is historically a course with a high failure/repeat rate. A contributor to poor performance in the course is a lack of preparedness and/or the inability to apply knowledge about fundamental concepts learned in general chemistry to new material in organic chemistry. This project will evaluate students' understanding of key general chemistry concepts critical to success in organic chemistry during the first week of the course to 1) allow students to assess their own preparedness; 2) provide advising and resources for students deemed at risk of failure to help them remediate deficiencies early in the course; and 3) encourage enrollment in the recitation session linked to the course. This project was a team effort with the other members being Ken Nakayama (Chemistry 220A lecture during Fall 2014 and Spring 2015), Jason Schwans (Chemistry 220A lecture during Fall 2014) and Elaine Bernal (Chemistry 224 instructor during Fall 2014 and Spring 2015).
Active Learning in an Integrated Lecture/Lab Environment Chemistry 124
Abstract:
This redesign is a multi-faceted approach to improve student success and persistence in our general chemistry sequences. The cornerstone of the project is the movement of most of our general chemistry offerings into an integrated lecture/lab environment that we call the studio. The new instructional mode allows us to provide a more streamlined curriculum and provides opportunities to introduce additional opportunities for ongoing formative assessment and feedback to improve student performance. This includes the incorporation of trained upper-division students called “Learning Assistants” who act as a more knowledgeable peer and can offer students immediate feedback in person. We are also creating new software tools that allow students to get immediate feedback on course activities in real-time during class as well as outside of the classroom. Additionally, we are re-streaming the populations in the course sequences to consolidate students with similar needs and interests and redesigning the curriculum to meet those needs.
Abstract:
This course redesign focuses on modeling, mapping, and assignment sequencing as a way to move beyond learning thresholds in economics. The modeling-mapping-scaffolding approach is designed to improve economic reasoning abilities, which are a barriers to writing proficiency and quantitative literacy, especially in large class settings. It will also incorporate both writing and technical peer facilitation/instruction. ECON 303 already employs flipped classroom instruction. The active learning activities will now be centered on problem solving, modeling, and mapping and the assignments will build on each other.
Redesign Analytic Mechanics with Online Homework and Active Learning
Abstract:
I propose to integrate computer- and experiment-based activities in these classes. For example, multimedia technologies like the “MasteringEngineering” will provide students with tutorial homework problems to emulate the instructor’s office-hour environment and provide feedback specific to their errors. Additionally, we will design experiment-based assignments, so students, through interaction with physical models, will significantly enhance their understanding and retention of topics presented in the course.
Abstract:
The project develops a variety of approaches to increase student success in two lower division General Education requirements at CSUF: HIST 110A and HIST 110B. Five pilot projects have been planned and will be rolled out in Spring 2015: peer instruction, supplemental instruction, peer tutoring, early warning, and ChronoZoom.
Business Calculus Using Supplemental Instruction and Clickers
Abstract:
In Business Calculus, we will restructure our course from a 4-credit (3-hours of large lecture, 1-hour of lab) format to a 3-credit (2-hours of large lecture, 2-hours of lab) format, at the request of the College of Business. Our past projects in Math 115 included a focus on providing individualized remediation for students who have not had mathematics in a long time, and on increasing the relevance of the content, technology and pedagogy, following the recommendations of the CUPM for Business and Management. Now, we strive to maintain these and expand on them as we change the materials to accommodate the new format. The new 3-unit Math 115 will run for the first time in Fall 2015. Spring 2015 will be dedicated to preparations for this change.
Abstract:
This course, like its prerequisite MATH 122 (Calculus I), traditionally has a very low success rate; the two act as a severe bottleneck for the academic programs of students in STEM fields. MATH 123 is taught each semester in 10 or so small sections, and we do not have a departmental mandate to impose pedagogical changes within the classroom. We aim to increase student success through a coordinated combination of online homework sets, weekly remediation for the at-risk students, and milestone examinations.
Brevik, John; Chesler, Josh; Li, Xuhui; Murray, Will
Abstract:
The project is aimed at integrating an effective learning tool, the Koondis platform, into STEM education - in this case in physics and chemistry. The Koondis platform (learn.koondis.com) is a structured interaction which automatically creates "select teams" (the Estonian term is a "koondis") for STEM students with specified roles. While the tool can be used in a variety of ways, an effective introduction into building a Koondis structure in a course is to use it as a homework "sandbox". We describe the results of rewarding students for effective teamwork and leadership in their Koondis in this ePortfolio.
Incorporating Virtual Labs in Introductory Geology Courses
Abstract:
Bottlenecks in introductory geology (EES1) labs arise from two compounding limitations: the number of students a lab room can hold and the number of graduate students available to serve as teaching assistants (TAs). This past Fall 2014, EES1 had ~500 seats available for ~5400 eligible GE B1students. Despite that bottleneck, lack of TAs resulted in the cancellation of 1 lecture and 5 accompanying labs. Given that the number of EES1 sections offered each semester is limited by the lab, there is a huge potential to make EES1 less vulnerable to limitations on lab size and TA availability by offering hybrid labs, where half of the labs are online and half are hands-on. This redesign seeks to implement virtual labs to reduce bottlenecking while updating EES1 lab curriculum into something that engages students at more innovative, modern levels of learning.
STEM Courses Using a Flipped Classroom and Peer Instruction
Abstract:
In 2011 we started a program in our campus aimed at improving student success in STEM disciplines through a flipped classroom facilitated by Learning Assistants (LAs). Currently more than 400 students, and 30 learning assistants benefit from the program every semester. The results are impressive (statistics are provided in last year's eportfolio), and at the end of every semester we hear raving praise for the program from students and LAs. One of the goals of this proposal is, of course, to continue to improve and carefully grow the program by supporting faculty and LAs. At the end of each semester, the learning assistants frequently comment on how much better learners they have become through the program, and we often wonder how to extend these benefits as to reach all of our students. Our second goal in this proposal is exactly that: to build a learning skills website to provide resources that can help students improve their metacognitive skills, and learn how to learn. We are creating tools that students can freely access, as well as activities that can be assigned to students by any faculty member teaching a STEM class. Students will be able to document their work and turn it into their instructor for extra-credit or participation points. The website will also contain selected links to external resources; and a few short videos that where we model a productive and reflective dialog between two students. For example, one of the videos will show two students talking about what to do after they fail their first midterm.
Abstract:
BIOL 104 (4) Principles of Biology: Human Emphasis Principles of cellular, organismal and population biology with primary representation relating to the human organism. Includes study of cells, tissues, and mammalian organ systems. Enrollment restricted to Kinesiology majors. Three hours of lecture and three hours of laboratory.
Abstract:
I am redesigning the course as a hybrid-flipped course. As part of this redesign I am also testing whether or not the new pedagogy produces a statistically significant difference in student learning outcomes as measured by grades and DFW rates. In the fall semester 2014 I am teaching the course in a conventional way - lecture format. In the spring semester 2015 I am teaching the first third of the course as a flipped course - I am providing (self produced) videos of the first third of lectures and then meeting periodically with the students for more intensive and interactive learning experiences, emphasizing problem solving and some experiments. To determine the effectiveness of the hybrid-flipped pedagogy I am conducting a survey in each semester to identify, measure and control for any confounding variables.
Abstract:
Organic chemistry lecture courses are traditionally among the high failure rate courses in collegiate curricula across the nation. During the spring semester of 2014, we developed an “early warning” protocol for organic chemistry II lecture in which students thought to be at risk of failure were referred to the college advising center for remediation during the first week of classes. This project is a continuation of that effort in which we instituted this early warning system for organic chemistry I lecture. In our early warning protocol, a competency exam was administered during week one where the exam encompassed material from general chemistry I and II lecture that were deemed to be particularly relevant topics to organic chemistry instruction. Students with poor performances on this exam were strongly urged to seek advice from the college academic adviser and the lecturer and also enroll into a weekly recitation session (CHEM 224) so that their deficiencies could be addressed and confidence in the course material developed. The passing rate of CHEM 224-enrolled students were compared to that of non-224 enrolled students for courses offered in the fall of 2014 and spring of 2015.
Active Learning in an Integrated Lecture/Lab Environment Chemistry 125
Abstract:
This redesign is a multi-faceted approach to improve student success and persistence in our general chemistry sequences. The cornerstone of the project is the movement of most of our general chemistry offerings into an integrated lecture/lab environment that we call the studio. The new instructional mode allows us to provide a more streamlined curriculum and provides opportunities to introduce additional opportunities for ongoing formative assessment and feedback to improve student performance. This includes the incorporation of trained upper-division students called “Learning Assistants” who act as a more knowledgeable peer and can offer students immediate feedback in person. We are also creating new software tools that allow students to get immediate feedback on course activities in real-time during class as well as outside of the classroom. Additionally, we are re-streaming the populations in the course sequences to consolidate students with similar needs and interests and redesigning the curriculum to meet those needs.
Flipped and Active Learning in Principles of Macroeconomics
Abstract:
I will use an active learning approach to assist students in moving beyond the thresholds in economics. These thresholds include logical, abstract and quantitative reasoning. I will design assignments that allow for deliberate practice in these areas and create screencasts and videos as a way to interleave and reinforces these important skills.
Fully Online History - Indigenous Peoples of the Americas
Abstract:
Explores the culture, history, and geography of people from North and South America. It is the study of specific tribal regions within the U.S., Canada and South America and their traditional way of life pre-contact through the various stages of federal policies against them and their various ways of adaptation to those assimilative policies, told from the Tribal perspective through oral tradition.
Abstract:
This course traditionally has a very low success rate and acts as a bottleneck for the academic programs of students in STEM fields. It is taught each semester in 10 or so small sections, and we do not have a departmental mandate to impose pedagogical changes within the classroom We do have historical data that identify studenst as ``at risk" based on past courses and exam scores. We aim to increase student success through a coordinated combination of online homework sets, weekly remediation for the at-risk students, and milestone examinations.
Abstract:
This redesign made use of the Adobe Captivate 7 (eLearning development software) to create 7-12 minute modules for student engagement prior to class. Students are able to access the modules through iOS mobile devices and personal computers. Each short module presented one topic only related to the necessary mathematical background knowledge needed to solve problems presented in the next class period. Each module contained interactive examples and quizzes with immediate feedback. Upon entering class, students are required to turn in a daily "Ticket-In-the-door" that reflects and summarizes the online module. Class time now is less about lecture and more about student led discussion. Students are no longer struggling with keeping up and writing notes but rather involved with solving one or two mathematical problems together. This leads to the important feature of this environment. The flipped learning environment allows the instructor to walk around the classroom, check for understanding and provide students, especially struggling students, with a personalized learning environment.
Adaptive and Modular Learning with Technology in an Online Course
Abstract:
The aim is to develop a fully online course capable of serving over 200 students.The instructional spine of this course is a series of instructor created screencasts on every chapter of the text. The course is organized into 10 learning modules, each of which covers 2-4 chapters. Using Blackboard, an online quiz is given after each chapter which covers the text, the lecture and online supplemental material. Quizzes are set to adaptive release, so that students must pass one assessment before moving on to the next. A test is administered at the end of each module. Each module also comes with a writing assignment which students complete in an online journal using Google Docs
Abstract:
The project is aimed at integrating an effective learning tool, the Koondis platform, into STEM education - in this case in physics and chemistry. The Koondis platform (learn.koondis.com) is a structured interaction which automatically creates "select teams" (the Estonian term is a "koondis") for STEM students with specified roles. While the tool can be used in a variety of ways, an effective introduction into building a Koondis structure in a course is to use it as a homework "sandbox". We describe the results of rewarding students for effective teamwork and leadership in their Koondis in this ePortfolio.
Redesign Psychology Course with Cafe Learn and Clickers
Abstract:
Psy 150 course is part of the General Education Curriculum with over 2400 students enrolled each year. Historically, this course has been a bottleneck course with a high D/F/W rate. The redesigned course (a large lecture) seeks to utilize: a) in-class clicker questions, and b) an online learning platform--Cafe Learn--to create a blended, outcome-based learning experience.
Flipping a Stats Course-Online Lectures and Supplemental Instruction
Abstract:
Stat 250 is a general elective introductory statistics and data analysis course for students throughout the sciences, social sciences, health and human services, and business. This course redesign develops a flipped classroom format whereby students learn core statistical concepts in online videos created by the instructors and participate in computer data analysis labs and directed problem-solving discussions. The aim of this approach is to teach statistics by doing, internalizing key concepts in experimental design, data collection, and analysis as well as statistical communication and assessments through an active classroom learning environment. The ultimate goal is to scale this effort up to all introductory statistics courses taught on campus, through online core concept lectures and subject-specific data analysis/statistical problem solving laboratories.
Abstract:
Principles and practice of analytical chemistry. Topics include error analysis and statistical treatment of data, gravimetric and volumetric analysis, electroanalytical techniques, chromatography, and selected quantitative instrumental techniques.
Abstract:
BIOL 201 (Biology of Organisms) is the second course in a three-course sequence required for Biology majors. It is a large lecture class (230+ students) with multiple lab sections. Because of the size of the class and because the nature of the labs is so different from the more experimental labs in the preceding course (Biology of the Cell), students are often disoriented and do not study effectively. This project partially flips instructional delivery, implementing on-line pre-quizzes for labs to ensure that students understand material and can put lab material in perspective before being confronted with it, thereby making their lab experience more effective.
Online Principles of Marketing Using Adaptive Learning
Abstract:
The Principles of Marketing course has been identified as a bottleneck course for the California State University. This is due in part because of the traditionally low pass rate, and the difficulty of enrolling in the course due to the large numbers of students taking the course. The redesign will address these bottleneck issues through the customization of an online textbook, self-paced learning guide tools and triggers. A detailed syllabus, step-by-step lesson plan and an online learning module through Moodle will provide a roadmap for students.
Abstract:
Organic chemistry is historically a course with a high failure rate. A likely contributor to poor performance in the course is a lack of preparedness and understanding of fundamental material covered in general chemistry that is essential for success in organic chemistry. Our project aims to evaluate students' understanding of this material within the first week of the course to: 1) allow students to assess their preparedness; and 2) provide resources for students who lack the requisite understanding of fundamental material and help them remediate deficiencies early in the course. This project is a collaboration of the author of this ePortfolio with Drs. Ken Nakayama, Stuart Berryhill, and Ms. Elaine Bernal.
Active Learning in an Integrated Lecture/Lab Environment Chemistry 126
Abstract:
This redesign is a multi-faceted approach to improve student success and persistence in our general chemistry sequences. The cornerstone of the project is the movement of most of our general chemistry offerings into an integrated lecture/lab environment that we call the studio. The new instructional mode allows us to provide a more streamlined curriculum and provides opportunities to introduce additional opportunities for ongoing formative assessment and feedback to improve student performance. This includes the incorporation of trained upper-division students called “Learning Assistants” who act as a more knowledgeable peer and can offer students immediate feedback in person. We are also creating new software tools that allow students to get immediate feedback on course activities in real-time during class as well as outside of the classroom. Additionally, we are re-streaming the populations in the course sequences to consolidate students with similar needs and interests and redesigning the curriculum to meet those needs.
Improving Student Success in Chemistry with Technology
Abstract:
General Chemistry is an essential class for students who are considering a science career, however, for CSULB students passing General Chemistry is often a major challenge! This class traditionally had such a high failure rate (> 40% DWF) that its first semester component, CHEM111A, was targeted to become part of CSULB’s Highly Valued Degree Initiative program. Now CHEM111A is a model of success. Through a combined approach of instituting a chemistry placement exam prior to student enrolment, additional training of laboratory Teaching Associates, and an increased student advising and early warning system, students in CHEM111A now average an 85 percent pass rate, and score well above the national average on the standard American Chemical Society final. In this project the same approach was incorporated into the second half of this course, CHEM111B, starting in Fall 2013. The goal was to improve overall student success in the entire year-long class.
Business Calculus Using Supplemental Instruction and Clickers
Abstract:
Since 2011, the Businss Calculus at CSULB has been taught with a hybrid model, established in The NGLC Hybrid Model Math Consortium Project. Our goal was to support student learning of the mathematical content as well as the obtaining the math skills relevant to a business career.
Abstract:
This course, like its prerequisite MATH 122 (Calculus I), traditionally has a very low success rate; the two act as a severe bottleneck for the academic programs of students in STEM fields. MATH 123 is taught each semester in 10 or so small sections, and we do not have a departmental mandate to impose pedagogical changes within the classroom. We aim to increase student success through a coordinated combination of online homework sets, weekly remediation for the at-risk students, and milestone examinations.
Abstract:
We have constructed a fully online course in introductory physics at the calculus-based level providing students an authentic means of interacting with both the instructor and their peers as members of a local scientific community while deeply engaging the scientific process. Through the use of an innovative online interaction tool, Learn.Koondis.com, we aim to provide 1) excellent preparation for downstream STEM coursework, 2) an authentic experience of physics as an academic discipline and career, and 3) and affordable and flexible online course.
Abstract:
In this project, a GE Psychology course (Psychology of Emotion and Motivation) was redesigned around three aspects: hybrid, modified flipped instruction, skills-based approach. Given that the course is a frequently taught GE course with a large yearly enrollment, the goal was to address bottleneck issues while also engaging the students in the learning process in a large-lecture format. The objective was to utilize innovative pedagogical approaches with technology to create more interactive and deeper learning of the material. The pedagogical focus was on how knowledge and skills go hand-in-hand in creating a powerful learning environment that promotes long-term ability to understand and use the concepts learned in class after the class is over.
Incorporation of Virtual Labs and On-line Simulation Activities to an Upper Division General Education Science Course
Abstract:
This course does not have a lab component. In order to enhance the student’s learning experience, virtual labs and on-line simulation activities are adopted and implemented to the course. Submission Templates are developed and provided for students. Students are asked to submit filled activity template upon completion of the corresponding virtual lab.
Systemic Physiology Using Supplemental Instruction
Abstract:
This course redesign project will implement a STEM specific model of Supplemental Instruction (SI) known as Peer Led Team Learning (PLTL). In addition to best practice strategies of Supplemental Instruction, PLTL tools and curriculum created by Sacramento State's National Science Foundation STEP (Science Talent Expansion Program) grant are implemented to increase student success and pass rates for Bio 131. Supplementary Instruction curriculum designed by faculty utilizes backward design, scaffolding, and active engagement strategies. Student peer facilitators are continuously trained, observed, and evaluated during the semester. Student peer facilitators also conduct research projects on the effectiveness of PLTL as part of their professional development as scientists and peer educators.
Incorporating Technology and Prezi into Principles of Marketing
Abstract:
Principles of Marketing has traditionally been a "bottleneck" course at SDSU since all majors within CBA are required to take it. Historically, many would take the course and not complete it with the adequate grade to move on thereby creating a backlog of students trying to "crash" the class. Beginning in 2009, increasingly more online assignments, quizzes, practice assignments, and recorded lectures have been added to the very large-section classes to facilitate students' progress through the course. Overall averages have increased from 74 to 78.5, enabling far less of a bottleneck in the course.
Abstract:
Business Finance, a core course for all business administration majors, is identified as a bottleneck course for the CSU system with a high rate of repeatable grades. One innovative feature of this redesign addresses the serious problem of lack of prerequisite knowledge through a pre-class assessment. The class is generally flipped. Moodle postings provide step by step, customized lecture notes/ video clips followed by in-class, iClicker and peer discussion sessions. Online postings of weekly topic summaries on Moodle provide an effective roadmap for better student success. Theories are often paired with examples found in students' own everyday lives.
Active Learning in an Integrated Lecture/Lab Environment Chemistry 127
Abstract:
This redesign is a multi-faceted approach to improve student success and persistence in our general chemistry sequences. The cornerstone of the project is the movement of most of our general chemistry offerings into an integrated lecture/lab environment that we call the studio. The new instructional mode allows us to provide a more streamlined curriculum and provides opportunities to introduce additional opportunities for ongoing formative assessment and feedback to improve student performance. This includes the incorporation of trained upper-division students called “Learning Assistants” who act as a more knowledgeable peer and can offer students immediate feedback in person. We are also creating new software tools that allow students to get immediate feedback on course activities in real-time during class as well as outside of the classroom. Additionally, we are re-streaming the populations in the course sequences to consolidate students with similar needs and interests and redesigning the curriculum to meet those needs.
Abstract:
This project aimed to improve access to an Area A3 general education course and to reduce the proportion of repeatable grades (D, W, and F). This course has been fully redesigned as an online course with efforts directed at utilizing universal design for learning concepts. I am also working to ensure that this course is fully ADA compliant and I am currently working on adding transcripts for video lectures.
Abstract:
This course was developed by professors in the Department of World Languages and Cultures, both men and women, with the idea of presenting the roles, life, writing and contributions of women in a wide range of cultures. Professors who originally developed the course, from the French, Spanish, and German programs, not only co-taught the course, but personally translated many of the stories to English for the first time. Two of the women were also Women’s Studies professors. Outside professors in Vietnamese and English added to our cultural expertise. The professors have continued their research and publishing, some have retired, and new professors have begun to teach the course. This course was developed to also meet the basic concept of the Women’s Studies major, including the core courses and the Humanities concentration “Arts, Expression & Language,” of which this course is an important element.
Abstract:
The Precalculus class at CSULB is currently taught in a large lecture format with the Northridge Hybrid Model. Assessment data collected and analyzed in conjuction with our redesigned Calculus 1 course have shown that the redesigned Precalculus class has had a positive effect on student performance and instructor effectiveness. In particular, pass rate for all Math 113 sections (all redesigned) in Fall 2013 was 75.1%, which brings the DFW failure rate below 30%. In addition, internal studies have shown that students with an A in Math 113 were three times as likely to pass Calculus 1 as students that pass Math 113 with a C. Consequently, improving the retention of STEM majors through their entire Calculus sequence hinges upon students' mastery of course material at this level. To this end, I decided to implement a flipped classroom hoping to increase students' exposure to doing and communicating mathematics and deepen their understanding of key concepts. Student's typical learning cycle includes exposing to materials with short (10~20 minute) videos with closed captions prior to class meetings, completing an instructor-led group quiz by the end of the class, and doing an optional online homework for students who want the extra practice. On an average day, rough 80% of the students attend classes. The midterm averages are comparable to other sections of Math 113 adopting the original Hybrid Model while students in the flippd class demonstrated a superior accumulation of content on the cumulative common final exam. An analysis of students' attitude changes during the course of the semester indicated that the students were intellectually challenged by the in-class tasks, experienced a change in their perspectives on the problem-solving process, and enjoyed learning with others on math-related tasks. The end-of-semester perception survey results indicated that a majority of the students enjoyed learning in the flipped class and left the class with many meta-skills such as time management, independent learning, and teamwork.
Abstract:
This course traditionally has a very low success rate and acts as a bottleneck for the academic programs of students in STEM fields. It is taught each semester in 10 or so small sections, and we do not have a departmental mandate to impose pedagogical changes within the classroom. We do have historical data that identify students as "at risk" based on past courses and exam scores. We aim to increase student success through a coordinated combination of online homework sets, weekly remediation (in the form of supplemental instruction sessions) for the at-risk students, and milestone examinations.
Redesign Math 30P with Clickers and WebAssign Online Homework
Abstract:
Math 30P has traditionally been a very challenging course more many of the students who take it. Taught as a lecture class, there has typically been fairly limited opportunity for instructors to guide students as they grapple with course concepts. The goal of this project is to examine the potential of in-class and out-of-class supports to enhance student success. In particular, the project is designed to assess the value of technology-enhanced in-class activities (e.g., clicker-based discussions and quizzes) as well as course-aligned workshops.
Virtual Clinical Labs in Medical Surgical Nursing Course
Abstract:
This project aims to redesign the NURS220 course, a 4 unit intermediate medical surgical nursing theory course, that is offered in the spring and fall quarters of each academic year, it is a required course for nursing major. The purpose of re-designing this course is to first, improve the quality of this course, by introducing nursing students to the e-learning method known as “Virtual Clinical Excursions” (VCE), and second, to investigate nursing students’ perceptions about the effectiveness of implementing the VCE in improving their learning experiences and learning outcomes. Third, to provide students with access to virtual hospital setting in which they will have self-paced time, and safe virtual space to perform intermediate medical surgical nursing care for virtual patients.
Abstract:
This project begins with a standard philosophy course in biomedical ethics, which serves a large number of philosophy majors/minors as well as students in science- and health-related disciplines. It converts the course into an entirely online mode while still preserving as much of the rigor and engaging discussion as possible, both between professors and students and among students themselves.
Flipping Introductory Psychology with Affordable Materials
Abstract:
The primary goal of the redesign is to use a lower-cost textbook. A secondary goal is to pilot test an online outcomes based course platform. A final goal is to use the online course platform to facilitate course activities using the flipped classroom model.
Abstract:
The goal of this redesign was to take a defunct, face-to-face class and put it online...while still getting students to physically explore the natural environment and conduct their own scientific experiments.
Abstract:
Biometrics (BIOL 300) was redesigned by replacing the weekly face-to-face laboratory sessions, which are held in a computer classroom, with online labs. Virtual lab activities were developed and integrated into the assignments so that students were involved in both data collection and data analysis. The lecture remained face-to-face. This mode of delivery decreased the cost per student by 55% and allowed more sections of the course to be offered. Pre- and post-surveys were administered to sections using traditional labs and sections using virtual labs. Analyses of the survey responses and course grades showed that there were no significant differences between the two delivery modes in the students increase in knowledge about statistics or in their attitudes towards statistics. These results suggest that the biostatistics virtual labs are just as effective pedagogically as the traditional labs, but more cost efficient.
Abstract:
The goal of the course re-design is to enhance science teacher preparation through the incorporation of virtual labs that engage students with Earth Science content and practices in ways that were not possible with previous lab activities. This course integrates the Next Generation Science Standards (NGSS) core ideas, crosscutting concepts, and scientific practices as an organizing framework. The use and development of virtual labs will also enhance student information, communication, and literacy skills as they prepare to teach 21st century learners. Eventually, by replacing half of the face-to-face lab meetings with virtual labs, this re-design will also allow us to offer additional sections of the course and lab, in light of a graduate instructor shortage.
Active Learning in an Integrated Lecture/Lab Environment Chemistry 129
Abstract:
This redesign is a multi-faceted approach to improve student success and persistence in our general chemistry sequences. The cornerstone of the project is the movement of most of our general chemistry offerings into an integrated lecture/lab environment that we call the studio. The new instructional mode allows us to provide a more streamlined curriculum and provides opportunities to introduce additional opportunities for ongoing formative assessment and feedback to improve student performance. This includes the incorporation of trained upper-division students called “Learning Assistants” who act as a more knowledgeable peer and can offer students immediate feedback in person. We are also creating new software tools that allow students to get immediate feedback on course activities in real-time during class as well as outside of the classroom. Additionally, we are re-streaming the populations in the course sequences to consolidate students with similar needs and interests and redesigning the curriculum to meet those needs.
Flipping ECE 114: Computer Programming for Engineers
Abstract:
To improve learning and retention by providing engaging interactive online resources, motivated by practical real world examples and supported by embedded self-tests. Assessment of these materials will be based on a “flipped” or partially flipped class format, which students study the online materials before class. So that class time may be fully devoted to discussion and examples and problem-solving.
Abstract:
In an effort to create the first online course offered in the Department of Geography, we will be developing a series of accessible video lectures through Camtasia and Youtube, and archiving a selection of no-cost web-based supplementary resources for student use. We will work to build an accessible and attractive website for the course, through our current LMS (Moodle). We will also work to develop a series of high-impact assignments, through which to assess and evaluate student knowledge.
Abstract:
This course, like its prerequisite MATH 122 (Calculus I), traditionally has a very low success rate; the two act as a severe bottleneck for the academic programs of students in STEM fields. MATH 123 is taught each semester in 10 or so small sections, and we do not have a departmental mandate to impose pedagogical changes within the classroom We do have historical data that identify students as ``at risk" based on past courses and exam scores. We aim to increase student success through a coordinated combination of online homework sets, weekly remediation for the at-risk students, and milestone examinations.
Abstract:
This course, like its prerequisite MATH 122 (Calculus I), traditionally has a very low success rate; the two act as a severe bottleneck for the academic programs of students in STEM fields. MATH 123 is taught each semester in 10 or so small sections, and we do not have a departmental mandate to impose pedagogical changes within the classroom We do have historical data that identify students as ``at risk" based on past courses and exam scores. We aim to increase student success through a coordinated combination of online homework sets, weekly remediation for the at-risk students, and milestone examinations.
Abstract:
We have chosen a two-pronged approach to improving student achievement in Calculus 1. First, we offer a preparation for calculus course through the ALEKS system for students to complete within the first six weeks of the semester. This supplement is designed to refresh and improve students’ prerequisite knowledge. Secondly, throughout the semester, we offer students to participate in Supplemental Instruction for two hours per week.
Implementation of Online Adaptive Learning for Pre-nursing Students
Abstract:
CHEM 5 was designed at the request of the Department of Nursing to allow pre-nursing students to fulfill the GOB chemistry prerequisite in one semester. Due to extremely broad content coverage from three major areas of chemistry (general, organic, biochemistry), the course is conducted at an accelerated pace, which is problematic for students who don't have the proper preparation. Student performance is strikingly bimodal, with 40% of the students receiving A's and B's and nearly as many (35-40%) receiving D's and F's. The average GPA of pre-nurses admitted to the CSUS BSN program is greater than 3.9/4.0, meaning students can afford only one B and nothing lower than a B in their high-stakes prerequisite courses. Here, we evaluate 1) pre-semester assessment tools for gauging student readiness and 2) on-line adapative learning for improving student performance in CHEM 5.
Abstract:
Redesign PHIL 101 Ethics and Social Issues for sections to be delivered fully online. The course will meet or exceed a recently adopted eLearning policy which puts Quality Matters quality assurance at the fore. The attempt is to retain or improve pedagogical success rates in the online environment as compared with traditional sections of the course and confront the special challenges presented an online course where assessment is writing intensive.
Hybrid Physics Course Using Video and Supplemental Instruction
Abstract:
This is a new means for lecture capture that utilizes a glass screen that acts as a transparent whiteboard. The instructor writes on the screen, and a camera on the opposite side records the video. The instructor is now facing the camera. Students viewing the video are able to observe the nuances of problem solving as their professor teaches physics principles while facing them. And the instructor is not required to write backwards! The writing becomes forward with a simple horizontal flip of the image (done in software or with a mirror, like Ambulance in your rear-view mirror).
Math 120: Intro Probability and Statistics Using Videos
Abstract:
In this project, we consider redesigning the curricular foundations of the introductory statistics course at Cal State Fullerton. This is mainly approached through producing short videos that highlight the major themes of the class. Moreover, we aim to revisit the pedagogical aspects of the intro course in larger classroom settings, through utilization of audio-visual tools, as well as incorporation of R, the most popular statistical programming language. This course redesign will also provide training opportunities for the introductory statistics faculty.
Abstract:
CSUCI is one of the fastest growing institutions in the U.S. As the number of students grows in our classes, bottleneck challenges have arisen for several reasons. As the class size increases, the amount of grading done by the sole instructor greatly increases. Consequently, the amount of time left to the instructor to prepare materials is significantly reduced. The use of an Online Homework Management System as a Virtual Lab provides ample opportunity to transition from practice to mastery—an opportunity that otherwise would be missed simply because there is a limitation to how much grading an instructor can complete while also being responsible to deliver knowledge to a diverse group of students throughout a semester.
Flipped Classroom using Online Learning Modules & Quizzes in BIO121 (Molecular Cell Biology)
Abstract:
BIO121 (Molecular Cell Biology), an upper division course required for almost all biology majors, has suffered from a failure rate of 30-40% since its inception. This content dense, fast-paced course builds on foundational concepts, so students who fall behind early tend to stay behind. I plan to use online learning modules as pre-assignments to introduce foundational concepts (with text, figures and videos) in advance of lecture. Each module will include an online quiz with synthesis level questions to encourage active thinking about the module content, as well as to provide the students with immediate feedback. Online discussion boards associated with each module will be used to facilitate peer instruction.
Abstract:
The Principles of Marketing course is a bottleneck course within the California State University System. This is due to the traditionally low pass rate, and the difficulty of enrolling in the course due to the large numbers of students taking the course. The redesign will address these bottleneck issues by redesigning the course to be100% online that incorporated a Quality Matters (QM) course redesign an review with the involvement of course designers.
Abstract:
This course begins with an examination of the components, concepts, and processes of human communication and language. The course surveys issues related to first language acquisition and how language development is impacted by neurology, cognition, culture, socialization, linguistics, and psycholinguistics. Students are expected to engage in discussions, complete assignments, projects, online activities, and summative and formative assessments.
Redesigning Thermodynamics with Activities and Technology
Abstract:
Thermodynamics is a notoriously difficult course in engineering. New concepts and terminology that are often abstract and counterintuitive for engineering students cause confusion. This project will focus on developing computer simulation modules that demonstrate key concepts and in-class activities that encourage peer-to-peer interaction and knowledge development to enhance student learning, engagement, and time on task to provide an enhanced learning experience. Student success will be measured using formative and summative assessments. Overall student success will be compared against previous course offerings.
Flipping Basic Electronics Course for Non Electrical Engineers
Abstract:
EE 321 is a high demand electronics course for non-electrical engineering majors that historically has had poor student performance. A winter 2016 section of the class will be offered in the “flipped” teaching style thereby creating opportunity for increased student engagement during class. In class time will be used for individual problem solving, as well as, group problem solving and hands-on activities. Class preparation includes watching 10 to 15 minute concept videos and completing low-stake on-line self-quizzes.
Incorporating Myefolio project and Supplemental Instruction into English Course Redesign
Abstract:
This e-portfolio shows the steps I took to redesign my English 10/11 course from May 2015 to May 2016 to comply with the Promising Course Design Grant. To incorporate more technology into my classes and to engage my first year students, I helped design a Myefolio guide and embedded the myefolio project into my fall semester English 10 Academic Literacies I and spring English 11 Academic Literacies II courses. When completed the Myefolio will include not only students best writing.
Elementary Japanese with Online Supplemental Instruction
Abstract:
To increase the number of students who succeed in elementary Japanese, this lower-division general education (GE) course was redesigned to maximize in-class activities on developing speaking skills. Writing skills were enhanced via written homework. The redesigned course also required online exercises and quizzes that focused on developing receptive skills (script and word identification, listening, reading, and grammatical competence). These online assignments were supplemental to in-class instruction, thereby increasing instruction hours and students’ Japanese language proficiency.
Abstract:
The goal of this redesign is to enrich the classroom experience of students enrolled in US History to 1877. I will reduce class lecturing and create activities that require the students to be historians by deeply engaging in secondary and primary sources to create projects.
Abstract:
Two of the biggest barriers to success that our students bring to the classroom are a lack of creative critical thinking skills and poor writing habits. By adopting Proven Course Redesign strategies in the large lecture class we can better address these two critical deficiencies by employing in-class projects (facilitated by the professor and peer mentors) that integrate content learned at home into a variety of exercises that promote critical thinking and writing. Rather than spending an hour and fifteen minutes delivering content and hoping the students can put it to some use, we can instead work closely with our students, fostering a sense of community and engagement, honing their ability to write about and analyze the content they have already consumed, and making them much better thinkers and writers. They will also benefit from the experience of working with peers to solve problems. These are all real-world skills that will benefit them in whatever career or academic path they choose.
Abstract:
This project will attempt to increase student engagement in face-to-face classroom work through a combination of initiatives. It also involves working with faculty colleagues within the department to encourage adoption of best practices.
A Problem Solving Approach to Pre-Calculus with Active Learning
Abstract:
At CSUDH, many students are not getting through key Mathematics courses that are required for most STEM majors. Pass rates in MAT 153 (Pre-Calculus) are low (79.2% of all students, calendar years 2009-2013). In addition, only 74.3% of CSUDH freshmen STEM majors persist into their second year. Redesigning this critical gateway course will support the advancement and retention of both freshmen and non-freshmen STEM students. To address these needs, faculty began to redesign the MAT153 (Pre-Calculus) course in Fall 2014 using classroom strategies including active learning, standards based grading, problem solving, frequent assessment and digital tools and resources for students.
Early Intervention Advising with Technology in Calculus
Abstract:
Continuing to improve our Redesign for Calculus I and Calculus II we introduce pre-testing in the first week of class. This test is administered online through WebAssign, the homework software system used in the redesigned class. Results of the test are thus immediately available, and we provide data to the advising centers College of Natural Science and Mathematics Academic Advising Center and the College of Engineering Student Success Center. The Centers use our information together with information from other core courses to identify students who show signs of struggling and provide advising and support for them early in the semester.
College Algebra Meets Biology: Flipping with Zaption
Abstract:
The current College Algebra course will be redesigned for Life Science majors. We focused our redesign on the following aspects of the course: Introduction of biology applications and focus on mathematical concepts relevant to life sciences majors; assessment of incoming algebra skills and strengthening of algebra skills through active learning in the workshop component; proper mathematics studying skills to improve retention of skills and concepts to increase student success in subsequent courses; use of videos enhanced with Zaption for flipping the classroom.
Abstract:
We will be developing a series of accessible video lectures through Camtasia and Youtube, and archiving a selection of no-cost web-based supplementary resources for student use. We will work to build an accessible and attractive website for the course, through our current LMS (Moodle). We will also work to develop a series of high-impact assignments, through which to assess and evaluate student knowledge.
The goal is to improve the D/F/W rate in the Organic Chemistry courses by increasing in-class problem-solving opportunities. The course was redesigned using online homework, Sapling Learning, exam "wrapper" metacognition exam-reflection exercises since Fall 2015, and clickers to increase student engagement in solving problems.
Online Supplemental Instruction (SI) for a Business Analytics Course
Abstract:
In this project we propose the introduction of supplemental instruction (SI) for an online section of the core course ISDS 361A, which is considered a bottleneck. This SI will be conducted remotely using an "online format" that is expected to mimic traditional SI sessions as closely as possible. SI efforts for the traditional sections of this course have been undergoing since Spring 2014 and have produced successful results in terms of improving student grades and success rates. Our hope is to extend this helpful resource to the online sections to benefit students as in the case of the face to face classes, as our prior assessment results have shown that online class performance is poorer than traditional classes. The online format affords students more flexibility as well that is expected to boost attendance.
Implementing Online Course Redesign for a High Demand Course
Abstract:
Most business majors at Cal State LA take MGMT 473, an introductory class for Human Resource Management (HRM) either as an elective (Accounting, Finance and other majors) or a core course (HR students from Management). MGMT 473 is also serves as a pre-requisite courses for all HR Option courses. Thus it lays the foundation for other 400-level courses. This project serves as an initial attempt to introduce and measure the impact of hybrid and online course redesigns on student success. If successful we will not only be able to address the issue of low grades but also of accessibility. An online course will greatly help our students, most of whom have jobs and other responsibilities.
Abstract:
General Chemistry is a bottleneck course that is a requirement for nearly all STEM majors. Improving student success is a two pronged effort: the first to agree upon what is the target for student proficiencies, skills and attitudes for student success, and; second to decrease the number of students receiving non-passing grades. Flipping provides resources for students to use in solving the single concept problems, JITT provides a low stakes assessment of those skills and the results set the agenda for class to direct review on needed areas and problem solving strategies for more complex problems. As a secondary benefit, the on-line quiz software also includes an e-textbook at a substantial savings over the hard copy. Use of knowledge surveys and a “why are you taking this course” essay help the instructor with student prior knowledge and to develop more relevant examples.
Abstract:
ME126 Heat transfer is a required course in the Department of Mechanical Engineering based on two difficulty prerequisite courses of Thermodynamics (ENGR124) and Fluid Mechanics (ENGR132). Students are often challenged by current course materials and ill preparation from prerequisites and thus they either earn poor grades or fail the course. The goal of the course redesign is to improve student learning and their performance to reduce the failure rate. Through various pedagogical tools, efforts are made to provide active learning opportunity and practices are conducted to increase student engagement with course materials. A resulting student learning performance will be evaluated.
Adaptive Learning Technology for Network Analysis Electrical Engineering Course
Abstract:
This course is redesigned because vast majority of students who take this course are lost at very early stage. This can be attributed to their inadequate math skills and lack of understanding with respect to basic physics fundamentals mentioned earlier. The rapid pace of the quarter system is another issue for a slow learner. The redesign fully exploited the web technology. The web technology tremendously increases the information availability to a plethora of devices such as laptops, tablets and smartphones. Several smart device applications such as mutlisim touch and partisim can considerably enhance student’s understanding of circuit dynamics.
Enhancing Student Learning in Statistics through Activity-based and Online Instruction
Abstract:
This course is a junior level course which is a required course for Civil Engineering students. Furthermore, Mechanical and Computer Science engineering students also take this course to fulfil their requirements of a statistics class. In the past, student performance in the course has been weak due to the difficulties in understanding the subject matter and developing an understanding of correct applications of statistical methods under various circumstances in engineering context. Students come into the class with the misconception that this would be another math class. However, the challenge is to understand how to relate the theory to specific examples. Additionally, delivering all material in-class is a challenge given the course is only 2 units. The objective of this course redesign is to develop in-class activities that will help students grasp the knowledge of statistics through specific examples. Furthermore, online material (e.g. lecture and problem solving videos, interactive activities, learning modules) will be developed to supplement in-class instruction.
Flipping Writing Instruction in a Course Portfolio (Webbook)
Abstract:
This redesigned writing course takes components normally delivered through class lectures and activities - introduction to writing concepts and modeling of writing concepts - and instead delivers the components through an online webbook. By having students study writing concepts and analyzing models outside of class, more class time can be spent practicing concepts and engaging in peer review.
Hybrid Course Redesign to Increase Student Success for Spanish I
Abstract:
Spanish courses are in high demand to meet the Foreign Language Graduation Requirement. In order to accomodate students' needs, we created an intensive one semester course that combines Spanish 1A (4 units; the prerequisite for Spanish 1B) and Spanish 1B (the graduation requirement). Using the redesign the course has the potential of serving 50 students in every section of Spanish 1A and 1B combined.
Abstract:
This project seeks to implement proven redesign strategies in order to increase student success in a California Title V course. Seeking to increase student investment and interaction, the course redesign will adopt and create group and writing assignments more responsive to student needs. Course modifications are the result of close collaboration with colleauges throughout the CSU system.
Active Learning in "The Essentials of U.S. History"
Abstract:
History 15A is a course for history majors and non-majors with an annual enrollment of 1,000 students per academic year. For many of these students it is the only history course they will take in their undergraduate education. In the past the course was team taught with political science instructors and now for the first time it is being offered as a sole history course. We are redesigning this course to improve learning outcomes, engage more students, and provide a true introduction to the essentials of U.S. History.
HIST131: US History, 1865 to the Present with Video Lectures and Online Quizzes
Abstract:
This project is an effort to redesign an introductory American history course in a way that focuses on skills and themes. I hope that the video guides and the online quizzes, when combined with a more focused and limited use of the class textbook, and a greater emphasis on reading and discussing primary source documents in small groups, will help the students to engage more closely with the material, and lead them to become better historical thinkers.
Abstract:
The course will be redesigned to use I) a flipped format, II) a mastery learning progression approach and III) data based decision making to target instruction. Technologies used to facilitate these changes are I) lecture capture technology; II) computer based testing using data gathering and lock down browser technology, and III) learning analytics software, wireless classroom response systems (i.e. “clickers”), and video messaging.
A Problem Solving Approach to Pre-Calculus with Active Learning
Abstract:
At CSUDH, many students are not getting through key Mathematics courses that are required for most STEM majors. Pass rates in MAT 153 (Pre-Calculus) are low (79.2% of all students, calendar years 2009-2013). In addition, only 74.3% of CSUDH freshmen STEM majors persist into their second year. Redesigning this critical gateway course will support the advancement and retention of both freshmen and non-freshmen STEM students. To address these needs, faculty began to redesign the MAT153 (Pre-Calculus) course in Fall 2014 using classroom strategies including active learning, standards based grading, problem solving, frequent assessment and digital tools and resources for students.
Incorporating Supplemental Instruction in the Course Redesign for Calculus II
Abstract:
We are working with peer assisted mentoring programs to strengthen educational materials with the goal of increasing student understanding of the core concepts of Calculus II. The goal of the course redesign is to reduce DFW rates and convince students of the importance of peer study early in their college careers.
College Algebra Meets Biology: Flipping with Zaption and Focus on Algebra Study Skills
Abstract:
The current College Algebra course will be redesigned for Life Science majors. We will focus our redesign on the following aspects of the course: Introduction of biology applications and focus on mathematical concepts relevant to life sciences majors; assessment of incoming algebra skills and strengthening of algebra skills through active learning in the workshop component; proper mathematics studying skills to improve retention of skills and concepts to increase student success in subsequent courses; use of videos enhanced with Zaption for flipping the classroom.
Redesigning the Intro to American Government Experience
Abstract:
By challening the traditional American Government classroom experience, student engagement and participation in the course can significantly increase. By enhancing the learning experienve students perform better and earn higher marks in the class.
Hybrid Team-Based Learning Course: Redesigning an Undergraduate Social Psychology Class
Abstract:
In summer 2014, I flipped my Social Psychology class using Team-Based Learning model (TBL) as a guide in order to encourage students to read before the class and interact more with other students in class. TBL is a unique collaborative learning method in which students become active rather than passive learners, while a teacher becomes a guide rather than a performer on stage (Sweet and Michaelsen 2012). In this course redesign project, I transform the flipped Social Psychology class into a hybrid one, posting the lectures and videos online, while spending even more in-class time for team and class discussion. By adopting a hybrid structure, this class offers the benefits of both the traditional face-to-face class and online class.
Intermediate Financial Accounting III Supplemental Instruction [SI]
Abstract:
ACCT 3213 This is the last course in a three-course sequence on intermediate financial accounting. The objectives of this course are to reinforce the fundamental knowledge developed in ACCT 3211 and ACCT 3212 and to continue to build the understanding on the theory and practice of financial reporting. During this course, we will cover topics such as income taxes, pensions and other post-retirement benefits, shareholders equity, share-based compensation, earning per share, accounting changes and error corrections, and the statement of cash flows (revisited). Homework and two exams are used to evaluate students’ understanding of the material. Special note: although the emphasis of this course is US GAAP, we are rapidly moving towards convergence with International Financial Reporting Standards (IFRS). Due to the importance many larger accounting firms place on IFRS and the intent by the AICPA to incorporate IFRS into the CPA exam, the material as well as exams will cover content on international accounting standards
Principles of Marketing with Interactive Classroom Technology
Abstract:
To enhance interaction and engagement for a mega section of Principles of Marketing. The goal is to use interactive technology (TopHat) in a large class so real-time data can be collected on student understanding of concepts covered in-class. Enhancing interaction should also motivate students to review materials before coming to class.
Using Supplemental Instruction in Financial Management Course
Abstract:
At California State University, East Bay (CSUEB), the Financial Management course is a required core course for all the business-major students. The Chancellor’s Office has designated it as a “bottleneck course” or a high enrollment, low success course in the CSU. This project attempts to incorporate Supplemental Instruction as a part of the redesigned course to improve students' success rate as well as reduce graduation time.
Abstract:
This application is one of three applications submitted by three professors (Wayne Tikkanen, Krishna Foster, and Xin Wen) committed to working collaboratively on adapting Proven Practices to the General Chemistry sequence at Cal State LA. This cohort is half of the full-time, tenured professors who regularly teach General Chemistry at Cal State LA. The collaborative nature of this project will make it easier to institutionalize and sustain the instructional strategies. Because the strategies will be developed by a group rather than by a single individual, non-participating faculty cannot characterize the proposed changes as something impossible to institutionalize.
Online Pre-test for Predicting Student Success in General Chemistry
Abstract:
Chem 1110 is a challenging course and is required for a wide range of science majors including Chemistry, Biology, and many students pursuing a health related field. Unfortunately, the D/F/W rate averages around 30 – 40 % in this course. Supplemental instruction was introduced during the spring of 2014, but more intervention is needed to address academic deficiencies that some students have, which are preventing them from being successful.
A Hybrid Format for SAS Programming & Data Management
Abstract:
The objective of this proposal is to redesign the SAS programing course including two arms: (1) Develop a hybrid model of instruction in which core SAS programming skills lectures is provided online. (2) Emphasize program debugging and problem solving skills. The hybrid format allows an increased enrollment that is limited to a computer lab’s seat capacity and allows students to learn the computing skills with a pace they are comfortable.
Digital Design Class Using Project Based Learning Approach
Abstract:
Digital design fundamentals is a freshman/sophomore level course required to all Electrical, Computer, and Mechatronics engineering students. The Electrical and Computer Engineering department enrolls 160-200 students every year in the course. For many years, the DFW rate for this course has ranged from 26-46%. I believe the success rate of this course can be improved through the planned redesign of the course which will in turn improve the retention rate in the engineering discipline. Redesigning the course will focus on three major aspects: 1) include Hardware Description Language programming assignments to re-inforce understating of main topics. 2) Use a tablet to record all lectures and make them available to students after class. 3) Use online assessment tool to assess students’ understanding of main topics before proceeding to the next one.
Redesign of Fluid Mechanics with Video Tutorials and Lectures and Self Assessment Exams
Abstract:
Fluid Mechanics I (ME 311) is the last course in the engineering mechanics sequence (statics, dynamics, fluids) which is required by both mechanical and civil engineering majors. Like statics and dynamics, ME 311 is characterized by high enrollment and high repeat rates - since Fall 2007, approximately one-third of ME 311 students have received repeatable grades (W, D or F), with another third receiving C’s. This project will create various supplemental materials including modular video tutorials, recorded in-class lectures, self-assessment quizzes on Blackboard, and the curation of videos that demonstrate fluid mechanics concepts.
Project Based Learning for Engineering Numerical Methods Redesigned Course
Abstract:
It has been observed that students lack the required solving-problem and logical-thinking skills to be able to identify patterns in numerical method problems that can be generalized and implemented into a computer program. In the current pedagogical approach, students learn the tools but have little time to practice them and do not develop logical-thinking skills that are required to be successful in the course. Through this course redesign, elements of project-based learning will be incorporated to the course.
Using Web Tools in a Hybrid English Composition Class
Abstract:
This ePortfolio represents a course redesign for Freshman English Composition with the implementation of Mobile Application Technology. Mobile Application pedagogy goes beyond the Flipped Classroom pedagogy in that student engagement and instructor feedback is performed in a "real time" environment. This course is contextualized in a cycle of 15-20 minute lecture followed by a 15-20 minute application and the cycle repeats for the duration of the class.
Abstract:
The redesigned course will engage students in activities “Reacting the Past,” peer review of writing assignments and consensus-building analysis of historical sources. Team activities will give students first hand experience with two important themes of HST 202 – freedom and democracy. A “learning communities” approach with students working collaboratively in small teams will facilitate growth of academic and social skills. The learning communities are defined as “teams” rather than the traditional “groups” and will provide a place for freshman and sophomores to acquire or expand the fundamental academic and social skills necessary for success in college. Instituting this course redesign will increase student motivation, critical thinking skills and improve Student Learning Outcomes. Students will graduate with an understanding of the past that prepares them for meaningful participation in the future. Increased success rates in History 202 can play an important role in university retention and graduation rates.
Abstract:
This course redesign will refocus the course so that it emphasizes activities that will help students develop their critical thinking, analytical, critical thinking, and communication skills. Course redesign will emphasize the use of primary sources, students' development of necessary understanding of historical context, and ability to construct and defend a convincing argument, based on analysis of primary sources.
Abstract:
A world history course that fulfills a GE requirement and is required for history majors was redesigned using a student assistant to mentor students, redesigned lectures utilizing "Backward Design" strategies and additional outside resources to supplement lectures and reading, group writing experiences, and quizzes using the text online materials to reinforce concepts. In addition, shorter essays that receive immediate feedback were implemented.
Active and Engaged Learning in MATH 143 Calculus III
Abstract:
In this project, I seek to improve student success and engage students more actively in the learning process. I will record screencasts of mini-lectures online for students to watch prior to class sessions, and will develop active-learning materials for students to work on in small groups during class sessions.
College Algebra Flipped Classroom for Student Engagement
Abstract:
This redesign made use of the Adobe Captivate 7 (eLearning development software) to create 7-12 minute modules for student engagement prior to class. Students are able to access the modules through iOS mobile devices and personal computers. Each short module presented one topic only related to the necessary mathematical background knowledge needed to solve problems presented in the next class period. Each module contained interactive examples and quizzes with immediate feedback. Upon entering class, students are required to turn in a daily "Ticket-In-the-door" that reflects and summarizes the online module. Class time now is less about lecture and more about student led discussion. Students are no longer struggling with keeping up and writing notes but rather involved with solving one or two mathematical problems together. This leads to the important feature of this environment. The flipped learning environment allows the instructor to walk around the classroom, check for understanding and provide students, especially struggling students, with a personalized learning environment.
Abstract:
This course redesign implemented a supplemental instruction (SI) model with an enhanced curriculum that includes assignments for students to develop learning skills, such as metacognition. There were three sections in Spring 2016, each with a different SI model. Building off of an existing NSF grant, we are used two Peer Assisted Learning (PAL) facilitators. We also had an inexperienced tutor from the Math Learning Skills department. In two sections, the SI lab is required. In one of these required SI lab sections, the SI was led by two PAL facilitators, while in the other section the SI was led by one MLSK tutor. In the third section, the SI was optional and no facilitators assigned - students had access to drop-in tutoring labs and time dedicated to MLSK lab in their course schedule.
Abstract:
Physics 141 is a difficult course for many engineering, science, and physics students at Cal Poly. I want to improve student success and engage students more actively in the learning process by including online videos, in-class active learning worksheets and problem sets, and online assignments in the curriculum.
Active Political Engagement through Adaptive Learning Assignments
Abstract:
POLS 150 is a required General Education (GE) course for all students to graduate, and has proven to be a difficult course to pass for many students. In teaching this course, I have found that many students general are not intrinsically interested in the subject. The biggest challenge is getting them to accept the idea that government matters to them and belongs to them. Indeed, what goes on in Washington seems relatively abstract to them and I want to find ways for them to relate to what goes on there. I have, in the past, made efforts and tried to create assignments, that help them understand that this material is important not just for the exams, but also to increase their cultural and civic literacy. However, I do not feel that I have been as successful as I would like in these endeavors. A program that more actively engages students in contemporary discussions of the political could help them overcome their disinterest in government, which should help them relate better to the vocabulary of the course, and therefore increase their success rates.
Abstract:
Five video tutorials focused on core concepts and theories in Psychology were added to the redesigned course. There was a modest gain in final grades when comparing students in the redesigned course and the original course. However, less than 5% of students in the redesigned course consistently watched the video tuturials, so the modest gain in success is unlikely due to the video tutorials. The redesigned course was substantially smaller than the original course, which may have attributed to increased student success.
Improving Student Success in Upper Division Large Enrollment Statistics Class
Abstract:
Stat 350 is a core course for statistics, computer science, and other quantitatively orientated majors in Science, Technology, Engineering and Mathematics (STEM) disciplines.The demand for the class has grown rapidly in recent years, from a total of 41 students in the year of 2010 (offered only in the Fall) to a total of 175 students in 2015 (52 in Summer 2015 and 121 in Fall 2015). We develop a hybrid/flipped model of instruction during Fall 2015 to tackle three difficult areas in the course: available seats, DFW rates, and training in statistical computing for a large enrollment class.
Active Learning and Flipped Classroom in a Bottleneck Accounting Concentration Course
Abstract:
A majority of the students who take this course took their prerequisite financial accounting course in community colleges. The level of coverage on topics varies significantly across community colleges. Therefore some students are not well prepared for the course. On average we have 50-60 students in each section. The topics that needs to be covered in this course are comprehensive and extensive. Therefore it is hard to engage any other types of pedagogy methods except lectures. To redesign the course, I will make three changes in the class: 1. use recorded lecture to prepare students for their in class sessions. 2. Use tutoring services to give students additional help. 3. Use the in class time to engage students in active learning .
The Biology major switched over to requiring iPads in Fall 2013. iPads break down many past constraints. We can present material that is rich in color photographs, videos, interactive widgets, and even little games. In a lecture class, students can quickly upload images and be quizzed in real-time. Apps as well as widgets can be produced that make learning the material more visual and engaging. In addition, we are taking the opportunity to redesign so as (i) to make the information more up to date, (ii) to take full advantage of campus organisms, and (iii) to have the students learn via doing small projects. Flipped is involved in the sense that we take a great deal of class time for active learning, and a great deal of information consumption is done via video and other media between classes; iPads are something like super clickers for example allowing students to submit drawings in the middle of a class activity; most importantly, we are able to capitalize on redundantly teaching through reading, visuals, hands-on-the-organisms, and projects.
In Class vs. Out of Class Technology Interventions for Biology 101
Abstract:
The focus of the 2015-16 redesign is to build on the efforts that were initiated during the the 2013-14 redesign project. Due to turnover in the faculty involved in the original redesign, some elements from the original project have expanded (in particular the use of Supplemental Instruction sections), but others have not. A full-time Biology 101 Coordinator started in Fall 2015, and this project is supporting her efforts to support the current Biology 101 instructors, and to expand the redesign effort across all Biology 101 sections.
Principles of Marketing - Revamped for Student Success
Abstract:
The Principles of Marketing course is one of the highest in demand in registration numbers in our college with 7-10 sections being offered every semester, including a number of sections online. The previous course design created a bottleneck for graduation and may have actually detered students from concentrating in marketing or related business disciplines. Our objective is to reduce the number of failing (repeatable) grades in this required course through course redesign and increase interest in the marketing concentration. The redesign of this section proved to be effective in increasing engagement and reducing failing grades.
Development of In House LMS Based Online Homework for Organic Chemistry
Abstract:
This projects goal is to build an in-house online homework set that works though our learning managment system, Blackboard, for CHEM 3020. By using a free option for online homework we hope to have more students do the homeowork, and perform better in the course.
Abstract:
Redesign MIS 123 Computer Literacy online learning method from a student-pulled online learning approach to a hybrid-blended online learning approach. The purpose of the project is to implement some teaching policies and learning rules for stimulating students learning process and increasing the passing rate for the course.
Abstract:
ME301 Thermodynamics is one of the primary engineering courses for Mechanical, Civil, and Manufacturing Engineering majors at Cal Poly Pomona. Like ME214 Vector Statics and ME215 Vector Dynamics, ME301 has been characterized by high enrollment and high repeat rates which make this bottleneck course a good candidate for course redesign. This project will create various supplemental materials including modular video tutorials, recorded in-class lectures, self-assessment quizzes on Blackboard, and the curation of videos that demonstrate thermodynamics concepts.
Engineering Course Redesign with Flipped Classroom Technology
Abstract:
This course is redesigned because vast majority of students who take this course are lost at very early stage. This can be attributed to their inadequate math skills and lack of understanding with respect to basic physics fundamentals mentioned earlier. The rapid pace of the quarter system is another issue for a slow learner. The redesign fully exploited the web technology. The web technology tremendously increases the information availability to a plethora of devices such as laptops, tablets and smartphones. Several smart device applications such as mutlisim touch and partisim can considerably enhance student’s understanding of circuit dynamics.
Development of a Computerized Tool for Teaching an Engineering Course
Abstract:
The project intends to extend develoment of a previously created software tool to help the students understand the contents of EEE 142. In the mentioned tool, students can take advantage of a graphical user interface for creating different components of an electric power networks in order to design and analyze systems in steady-state, particularly for “Power Flow” studies. The previously released tool has been very well received by the students, and through their comments, students have provided valuable feedback for improving the tool.
Abstract:
English 1A is an introductory writing course that fulfills the written communication requirement for all incoming students. Recent assessment of student learning found that a high percentage of students failed to acquire the skills needed to read and write about complex ideas. To better meet its learning goals, ENGL 1A was redesigned to scaffold instruction for the multimodal literacies in which students are already engaged as members of digital communities.
English Composition Using Mobile Application Technology
Abstract:
This ePortfolio represents a course redesign for Freshman English Composition with the implementation of Mobile Application Technology. Mobile Application pedagogy goes beyond the Flipped Classroom pedagogy in that student engagement and instructor feedback is performed in a "real time" environment. This course is contextualized in a cycle of 15-20 minute lecture followed by a 15-20 minute application and the cycle repeats for the duration of the class.
Active Learning and Skill Building in the U.S. History Survey
Abstract:
As a department, we have observed that there is a high failure rate across multiple sections of History 130 and History 131. Many of our entering students lack the skills necessary for college work. Writing, notetaking, critical reading, and analytical skills are generally weak. The US history survey requires students to read difficult material, synthesize a vast amount of information, and complete writing assignments for which they are poorly prepared. In addition, many of our students have to overcome obstacles common to first generation college students including financial pressures and a lack of family support for their academic endeavors.
Abstract:
History 15A is a course for history majors and non-majors with an annual enrollment of 1,000 students per academic year. For many of these students it is the only history course they will take in their undergraduate education. In the past the course was team taught with political science instructors and now for the first time it is being offered as a sole history course. We are redesigning this course to improve learning outcomes, engage more students, and provide a true introduction to the essentials of U.S. History.
Strategies for Engagement in the Flipped History Lecture Hall
Abstract:
This course redesign project will adopt and adapt strategies for greater collaborative learning and peer mentoring in this large format introductory American Institutions course, with the goal of encouraging greater student engagement with material and subsequently student success in the course.
Abstract:
This project will redesign Math 280 Strategies of Proof, one of the required core courses in the mathematics major, to implement a flipped classroom model. The project involves creating video lectures on the course material that students will view outside of class while class time will be dedicated to working on homework assignments in groups.
Abstract:
I plan to adopt and adapt the proven CSU model to train our supplementary instruction students. I will design the curriculum for the supplementary instruction sessions.
Rethinking Developmental Mathematics using Video and Active Learning
Abstract:
Developmental mathematics takes a lot of financial and temporal resources for the students and universities. This redesign unpacks an approach to building procedural fluency and algebraic conceptual development. This course could be implemented at the high school settings to reduce remediation at the community colleges and universities.
Abstract:
This course serves as apre-requisites to many important senior-level ME core courses in the curriculum such as Mechanical Vibrations, Mechanical Measurements, Control Systems, and Acoustics and Noise Control. Failure of this course will impede students' educational path towards graduation. It is observed that students often have a hard time visualizing abstract concepts.This course is mathematically intense, and thus create additional challenges. The objective of this proposal is to enhance students’ learning through use of simulation software and technology to assist students in understanding and visualizing course concepts, and thus to shorten time to degree and increase graduation rate of Mechanical Engineering students.
A Flipped, Self-Paced, Peer-Tutoring Approach to Philosophy
Abstract:
This is a flipped, self-paced, peer-tutoring approach to an introductory course in symbolic logic. All lecture material is delivered online. Class meetings occur on a traditional schedule, with the entire meeting devoted to tutoring and testing. The course is divided into 12 learning modules and students must achieve mastery of a module before proceeding to the next one. Evidence of mastery is a B or better on a module test. To receive a B or higher in the class students must spend a specified number of hours tutoring other students. The course grade is a strict function of the last module test passed.
Creating Engaged Learning Communities via U-Courses for Political Science 155
Abstract:
In this active, project-based course, teams of students work intensively to apply course concepts to addressing issues, problems, and policies in various communities. By working with each other, mentors, faculty and community activistsThis link will take you to an external website in a new tab. - , we explore the challenges of fostering innovations in government policy on the issues we uncover and research. We examine government, enabling us to see how social and political values shape public policy. As students research, write and act on issues they come to care about, they have the opportunity to explore the context of critical issues of concern to our campus and community. We work with a diverse set of interests, think outside of the box, breach boundaries, and get our hands dirty doing this authentic work. The U-Course provides credit for students’ required writing course and for the required American Government course (English 130 and Political Science 155). Within the U-course students are treated as emerging professionals and innovators. Their work is project-based and is supported by student mentors who act as "more capable peers". Projects may include blogs, mock political campaigns, community projects, simulations, films, interactive exhibits, and much more. Students improve on creative thinking and writing abilities in order to create a social and political policy future that reflects their values.
Abstract:
All four faculty who teach the course (Cynthia Selby, Scott Lewis, Adelaide Kreamer, and Brian Oppy) were involved in developing this proposal, and all will adopt the redesigned model. The participating faculty will build a collective set of course resources (mini-videos, learning exercises, and other materials to be developed in the course of the redesign). These resources will be shared on a departmental folder on the university server so that all teaching faculty can access them. The department has agreed to a set of student learning objectives (SLOs) that are consistent with the American Psychological Association. Those will be revisited and revised at the start of this project.
Reducing Bottlenecks and Improving Student Success in Large Enrollment Statistics Courses
Abstract:
Stat 250 is a general elective introductory statistics and data analysis course for students throughout the sciences, social sciences, health and human services, and business. This project entails the second phase of the course redesign. In the first phase, statistical computing lab assignments (simulations and data analyses), concept review and computing demonstration videos, and LMS-based conceptual online homework assignments were developed. These aspects were incorporated in the Spring 2015 offering of the course, each offered online as part of the students' work outside the classroom (ePortfolio: http://contentbuilder.merlot.org/toolkit/users/sdsumathstat/sdsu_stat250_course_redesign.) In this second phase, we will develop a flipped classroom format whereby students learn core statistical concepts in online videos created by the instructors and participate in computer data analysis labs and directed problem-solving discussions in the classroom. The aim of this approach is to teach statistics by doing, internalizing key concepts in experimental design, data collection, and analysis as well as statistical communication and assessments through an active classroom learning environment. The ultimate goal is to scale this effort up to all introductory statistics courses taught on campus, through online core concept lectures and subject-specific data analysis/statistical problem solving laboratories.
Intermediate Accounting with Supplemental Instruction
Abstract:
Use of Supplemental Instruction for intermediate accounting to facilitate student learning of complex concepts and uses in business to increase student success.
Abstract:
I would like to transform how I help students in the Econ 102 course I teach by offering them the opportunity to get assistance during office hours via the LG. This is crucial because the class is already a hybrid class that a lot of students take because they work or have other time commitments throughout the week. As a result, they can rarely make it to campus at specific times during the week, even if they find the material challenging. The LG will allow me to assist them properly, share the questions asked live with other students who log on at the same time for the office hours and, overall, enhance students’ learning experiences.
This application is one of three applications submitted by three professors (Wayne Tikkanen, Krishna Foster, and Xin Wen) committed to working collaboratively on adapting Proven Practices to the General Chemistry sequence at Cal State LA. This cohort is half of the full-time, tenured professors who regularly teach General Chemistry at Cal State LA. The collaborative nature of this project will make it easier to institutionalize and sustain the instructional strategies. Because the strategies will be developed by a group rather than by a single individual, non-participating faculty cannot characterize the proposed changes as something impossible to institutionalize.
Abstract:
CS122 is a freshment database class which includes a lecture session and a lab session. To engage students and to improve students' learning, the class is flipped. Students watch pre-recorded videos to get course content before they go to class. In the lecture session, students work in groups on lab projects and get support from the instructor and TAs. In the lab session, students work alone on the assignements first and take quizzes at the end. To prevent cheating, individualized questions are used in the quizzes.
Analytic Mechanics - Dynamics Engineering with Clickers and Blended Learning.
Abstract:
One of the prerequisites for the dynamics course is statics (ENGR30). In the statics course students have been introduced to diagrams known as free-body diagrams. These diagrams show the magnitude and direction of external reactions acting on an object. In dynamics, these free-body diagrams coupled with another set of diagrams known as kinetic diagrams are ubiquitous in analyzing an object that is in motion. The goal of this project is to provide a medium through which the student will be able to visualize the motion of objects and practice generating the appropriate diagrams.
Abstract:
The aim of this project is to develop online course materials that can be used in either a flipped classroom or a fully online offering of BMED 213. Online and summer sections would help to ease the scheduling problems and enrollment bottlenecks that arise in this course that is taken by nearly 1000 students per year. The challenge is to ensure a level of student engagement and assignment completion rates equal to our traditional lecture-based sections. I hope to achieve this through a judicious mix of online videos and some aspects of a choose-your-own-adventure exploration of topics.
Redesigning Strength of Materials with Adaptive Learning Technology
Abstract:
Mechanics is the foundation of all engineering programs. Statics, Dynamics and Strength of Materials are the three essential courses of engineering mechanics. In the last two years, with the help of CSU course redesign program, we have done a significant amount of work in redesigning the Statics and Dynamics courses. Strength of Materials is the next course in this sequence. We have approximately 550 students taking this course every year. The current failure rate in this class is 35%. However, another 35% of the students receive a “C” grade in this class, meaning about 70% of all our students receive a grade of “C” or lower. Redesigning this course will complete the engineering mechanics sequence and help improve our overall student success.
Abstract:
Students are expanding their understanding of what it means to read and compose “texts” which now encompass a wide range of modes and media. Our current culture values digital expression and there are a vast array of digital tools available to produce multimedia texts. The changing face of real world digital communication allows each of us to be both a state of the art consumer and producer of this type of digital messaging. Equipping students with the analytical skills as a consumer of these multimedia pieces and the digital proficiency to produce their own multimedia assignments both in the academic environment and beyond in their profession and community is essential.
Academic Literacies Course using Online Collaboration and Peer Engaged Feedback
Abstract:
Redesign project will integrate Google Apps for Education platform into the course to allow for online collaboration, which will foster more individual and group writing, instructor and peer-engaged feedback and revision. Online interface will add "extra-classroom" opportunities that can make collaboration more accessible and revision more substantial.
Abstract:
Cartography is a discipline with a long history which has undergone significant changes with advances in technology. Students learn the core principles of cartography and visual communication, and must also keep up with a constantly evolving suite of software. The demand for this course is high, and this skill set enhances a variety of other disciplines. The purpose of this redesign is to take a very traditional, hands-on course and successfully convert it to a fully online format.
Abstract:
My US History survey course centers on collaborative learning through the creation of small Learning Communities of four or five students. Throughout the semester, students will complete small collaborative assignments alongside a larger, semester-long group project. I have also revised my course content to focus on the particular theme of Freedom in American history. Throughout the semester, students will regularly reflect on the changing meaning of freedom (or what it means to be free) in American society. This course is also a tablet-based course, which means much of the student's work will be administered through various apps that allow them to collaborate in realtime with their group members.
Incorporating Technology into Native American Societies
Abstract:
This project through the CSU Chancellor's Office allows for a redesign of a course that meets California State's requirement of American Institutions. The course to be redesigned is SBS 245: Native American Societies. This course will be redesigned to foster student success in the course and in the state and campus GE Area of American Institutions.
Learning Communities, Peer Mentoring, and Flipped Classrooms in the U.S. History Survey
Abstract:
This 2016 ePortfolio provides documentation on a revised version of an experimental U.S. History course first offered in Spring 2014. The course concept, developed by Carole Srole, Birte Pfleger, and Chris Endy, uses flipped teaching for content delivery, small-group learning communities for active learning and community building, and "near-peer" facilitators or peer mentors to support in-class activities and student success. The 2016 version will add several new features: periodic online homework, online surveys to assess student learning attitudes and student historical thinking skills, and a for-credit companion course for the advanced history students serving as peer mentors in the classroom.
Student Success in Business Calculus Using Clickers & ALEKS
Abstract:
In the 2015-16 School year, we implement, analyze and revise materials for a new format, which has 2 50-minute large lectures per week, and one 2-hour lab per week. Materials include lecture notes, On-line homework problems (written in house), iclicker questions, videos, Excel projects, and lab materials. We focus our redesign efforts around improving the allignment between our student learning outcomes with our course materials and exams.
Early Intervention Advising for Student Success using Technology for Calculus I
Abstract:
Continuing to improve our Redesign for Calculus I, we introduce pre-testing in the first week of class. This test is administered online through WebAssign, the homework software system used in the redesigned class. Results of the test are thus immediately available, and we provide data to the advising centers College of Natural Science and Mathematics Academic Advising Center and the College of Engineering Student Success Center. The Centers use our information together with information from other core courses to identify students who show signs of struggling and provide advising and support for them early in the semester.
Simulation of Political Meetings in Intro to American Politics Redesign
Abstract:
The student will be able to place him/herself within the context of the American political system, and identify how his/her own life chances are shaped by political institutions. The student will engage in self-reflection on her/his own political orientation, its origins, and its consequences. The student will demonstrate his/her ability to critically assess political writing, past and present political conditions, and the role of citizenship in America’s representative democracy.
Intro to Psychology Course Redesign from Large Lecture to Fully Online using Engaged Learning Technology
Abstract:
This course contributes to attainment of the bachelor's degree in psychology and has been offered since the inception of the psychology department enrolling approximately 500 students every semester. Currently the repeatable rate in this course is approximately 16%. It is believed that the main issue for the low success rate is lack of student engagement in the course content; therefore, the redesign will focus on increasing student engagement to ensure greater success