Welcome to the CSU Adopting AT ePortfolio Showcase. Discover faculty created ePortfolios documenting their course redesign experiences and accomplishments by entering a search term or browsing by discipline.
Calculus for the Life Sciences: Growth Mindset and Active Learning
Abstract:
MATH 124 aims to provide calculus skills and abilities to students in the life sciences. There are two issues that needed immediate attention in the course. First, low enrollment: In the academic year 2015–2016, the original course format served 25–30% of students compared to 2014-2015; this represented just 21% of the population of freshmen students in biology, although MATH 124 is a requirement for students in biology and other life sciences majors. Second, repeatable grades: In the two past academic years the average percentage of repeatable grades was 57%. Thus, it was key to redesign MATH 124 to reach a more sustainable balance for the undergraduate biology program. We addressed these two issues by revising the content of the course and aligning it better with key learning outcomes required for students in the life sciences. Online material (lecture notes, online videos, and practice problems) were developed as resources, and class time was combined with a hands-on computational lab for training, practice, discussion, and scaffolding using team activities.
Chemistry Laboratory Redesign Using Student Engagement Strategies
Abstract:
Our overarching goal is to enhance the General Chemistry I (CHEM 111) laboratory experience for students as a result of improved preparation for lab, a deeper understanding of the experiments and their application of lecture content; thus strengthening numerous learning outcomes of the course and increasing its success rate. This goal will be accomplished by: (1) developing a new low-cost lab manual with current and new experiments adapted to fit the manual, (2) incorporating videos, simulations, and online submissions into the student pre-laboratory preparation, along with student presentations of pre-lab lectures.
Elementary Statistics: Making it Relevant Course Redesign
Abstract:
MTH 107 is an elementary statistics course that has traditionally had a high DFW rate (in the 30-40% range), in part due to poor mathematical preparation for the student body required to take this course (International Business and Global Studies majors) and the nature of how statistics is often taught. In our increasingly data-driven world and with the rise of big data, statistics courses must take on a more computational emphasis that enables students to work with real world data. Our aim is to improve student outcomes in their quantitative skills while also empowering students to use statistical methods to solve real world problems. To accomplish this, we propose to focus on application-driven projects and analysis using both Excel and RStudio.
Improving Instruction in Electrical Engineering Circuits Course Using Technology
Abstract:
The project is intended to improve the teaching and learning experiences in this high attrition course. The plan is to selectively deploy flipped classroom methods, add appropriate online material, develop video support, and gain perspectives about the needs and relevance of the course for the students.
Adopting and Adapting Supplemental Instruction, Digital Homework and Adaptive Learning in BIOL 200
Abstract:
Supplemental instruction, digital homework and adaptive learning were implemented - for the second year- in the first quarter (of a 3 quarter series) of general biology course. The SI model adopted was the UKMC model, digital homework and adaptive learning were mandatory part of the course and we utilized the package provided by the publisher of the textbook used in the course. Both SI and digital homework benefited the students. Students with higher incoming GPA who attended the majority of SI sessions achieved the higher grades than students who had lower GPAs and did not attend a significant number of SI sessions.
Course Redesign using Blended Course Strategies and Mobile Technologies
Abstract:
Redesign of the biology majors genetics course was stimulated by Fresno State’s launch of the DISCOVERe (tablet computer-based instruction) initiative. The incorporation of mobile technology, in the hands of the instructor and students, provides opportunities to: engage students in new ways; provide more authentic experiences in the discipline (Hunter et al. 2007, Jones et al. 2010); improve their quantitative analysis and information literacy skills. Critically, both students and the instructor benefited as a result of the redesign: student grades improved; percent of repeatable grades decreased; marginal improvement occurred on a validated genetics assessment; course management efficiency dramatically improved with the integration of course management and student polling software.
Flipped Classroom and Student Engagement for Genetics Engineering Biology Course
Abstract:
It is currently not clear how effective the traditional 50-minute lecture format is with regard to student success. New pedagogical techniques will include the adoption of iClicker technology to have real-time measurements of student understanding, video-recorded lectures so students can review in an alternate format than textbook.
Flipping the Instructor: Evolution of a Tried and True Lecturer
Abstract:
In an effort to reduce repeatable grades in general chemistry, a hybrid classroom is being implemented. Core concepts are ported to online media, and the saved classroom time is used for additional active learning techniques: group activites, discussions, and problem solving. In the second semester of the redesign, supplemental instruction is implemented to a limited degree. Overall, the redesign lowered DFW rates and increased students GPA on average. Additionally, supplemental instruction seemed to correlate with increased performance.
Math Course Redesign with Flipped Classroom and Learning Assistants
Abstract:
PreCalculus Mathematics is a course that serves as a barrier to degree completion for a large number of students who need to take Calculus as a major requirement. Students are placed into PreCalculus based on results of the Calculus Readiness Test (CRT). While it does qualify for GE credit, the course is not a major requirement for any majors on campus. This course redesign implemented elements of a flipped classroom in order to provide more time during lecture hours to focus on small group work with the use of Learning Assistants (LAs) to facilitate learning.
My goal is to create a course that excites students about molecular biology, encourages them to deeply learn the content, builds on their ability to collaborate with their classmates, stimulates more critical thinking in the classroom, inspire life-long learning, and decrease my non-passing rate to 15% or lower. Team-Based Learning (TBL) is the pedagogical approach that can foster this multifaceted development, especially in students who are from disadvantaged environments and at high-risk for not completing their college education. I have piloted BIO 220 in Spring 2016 as TBL but found the need to make significant adjustments to the course to improve its impact. This CRT project allowed me the resources to 1) modify the structure of my TBL course, 2) improve the effectiveness of my team exercises, and 3) research the vast collection of science educational videos on the internet to identify those that are suitable to supplement my course material. At the conclusion of my redesigned BIO 220 course in Spring 2017, I had successfully lowered my non-passing rate to 8%.
Politics as Performance Art: Interpreting Hamilton, The Musical, in an American Institutions Course
Abstract:
In this redesigned course each of 7 student Groups selected as their focus 3 of the 46 hip-hop/rap songs from the musical Hamilton, all of which are grounded in historical documents. Students analyzed and interpreted their selected songs, reworking the material to be reflective of their own lives/POV in a flipped classroom environment throughout the quarter. The course was framed by the question: How can art help us understand American government?
Proven Course Redesign: Flipping an Upper Division Statistics Course in Psychology
Abstract:
Roughly four years ago, our department restructured an upper division statistics course in psychology by removing the laboratory component of the course in order to address the issue of a course bottleneck. While removal of the laboratory component helped increase course availability, it resulted in a decreased opportunity for students to grasp important conceptual foundations of statistical theory. The overall repeatable grade rate is high with roughly 20% of students in this category. The goal of this course redesign is to flip the course and incorporate laboratory-like active learning exercises back into the course structure.
Re-Flipping the Instructor: Active learning in General Chemistry for STEM majors
Abstract:
The second semester of our general chemistry sequence for majors has traditionally had a large DFW rate. In an attempt to add active learning in the classroom, a majority of the lecture material will be placed online in a number of learning modules designed to enhance overall content retention and improve student attitudes.
Redesign Intermediate Accounting with Supplemental Instruction
Abstract:
This course is the first course in the intermediate financial accounting sequence (ACCT3211, ACCT3212 and ACCT 3213). The main objective of this course is to develop an in-depth understanding of basic financial statements and external financial reporting for a for-profit entity. Topics include: conceptual framework for financial reporting and standard setting, accounting process, financial statements, and accounting for revenue recognition, cash, receivables and inventories. I plan to implement Supplemental Instruction in the class in Winter 2017. I attended CSU Course Redesign Summer Institute, and will participate online discussion and one day workshop in January, 2017. During Fall of 2016, I will start to find SI Leader Candidate for ACCT3211 and make recommendation. I will also carefully re-design my course to fit the implementation of Supplemental Instruction.
Redesigning Team-Based Activities in Organic Chemistry
Abstract:
The focus of the redesign is to reduce the D/F/W rate by improving students' attitudes about Organic Chemistry and exploring learning theory to improve their persistence. Lessons on having a growth mindset will be incorporated, as well as explicit instructions for achieving an A, B or C grade. Incentives will be given for students to form groups (Organic Learning Communities, OLC) outside of class, and structured activities will be provided for the OLCs on a weekly basis.
The goal was to redesign the course to take place in a computer lab for lecture and design customized Virtual Lab videos using the Learning Glass. The Virtual Lab videos are to demonstrate how to use MATLAB software. The combination of lecture time to practice Scientific Computing labs and having access to the demonstrations will allow students to complete lab assignments successfully at home.
Using Hybrid Online Instruction to Enhance Student Engagement
Abstract:
To increase student engagement and success using “high-touch tech.” The goal is to utilize digital tools outside of class to keep students connected to the writing process throughout the week. This hybrid format will also enable the use of more class time for active writing, revision, and oral feedback from the instructor. Keeping students engaged will help retain students and pass this fundamental first year course with confidence in their writing ability that will transfer to the other courses throughout their academic career.
A Problem Solving Approach to Pre-Calculus with Active Learning
Abstract:
At CSUDH, many students are not getting through key Mathematics courses that are required for most STEM majors. Pass rates in MAT 153 (Pre-Calculus) are low (79.2% of all students, calendar years 2009-2013). In addition, only 74.3% of CSUDH freshmen STEM majors persist into their second year. Redesigning this critical gateway course will support the advancement and retention of both freshmen and non-freshmen STEM students. To address these needs, faculty began to redesign the MAT153 (Pre-Calculus) course in Fall 2014 using classroom strategies including active learning, standards based grading, problem solving, frequent assessment and digital tools and resources for students.
Active and Engaged Learning with Technology in Mathematics for Engineering Students
Abstract:
Hundreds of engineering students enroll in Linear Analysis 1 each quarter, as it is a required class for their majors. This support class has been streamlined to incorporate what is typically two quarters’ worth of material (Linear Algebra and Ordinary Differential Equations) into one quarter. The density and quantity of material in Linear Analysis 1, while crucial to each student’s success in his or her respective major, make the course difficult for both the professor and the students. The fast pace does not allow students to absorb concepts deeply and instructors have insufficient time to cover the depth and breadth of topics. This course redesign will restructure the students’ learning environment in multiple ways, using technology to provide frequent and immediate feedback, more available resources, and more time in class for active, engaged learning assignments.
Two of the biggest barriers to success that our students bring to the classroom are a lack of creative critical thinking skills and poor writing habits. By adopting Proven Course Redesign strategies in the large lecture class we can better address these two critical deficiencies by employing in-class projects (facilitated by the professor and peer mentors) that integrate content learned at home into a variety of exercises that promote critical thinking and writing. Rather than spending an hour and fifteen minutes delivering content and hoping the students can put it to some use, we can instead work closely with our students, fostering a sense of community and engagement, honing their ability to write about and analyze the content they have already consumed, and making them much better thinkers and writers. They will also benefit from the experience of working with peers to solve problems. These are all real-world skills that will benefit them in whatever career or academic path they choose.
Active Learning in The Essentials of U.S. History""
Abstract:
History 15A is a course for history majors and non-majors with an annual enrollment of 1,000 students per academic year. For many of these students it is the only history course they will take in their undergraduate education. In the past the course was team taught with political science instructors and now for the first time it is being offered as a sole history course. We are redesigning this course to improve learning outcomes, engage more students, and provide a true introduction to the essentials of U.S. History.
Analytic Mechanics - Dynamics Engineering with Clickers and Blended Learning.
Abstract:
One of the prerequisites for the dynamics course is statics (ENGR30). In the statics course students have been introduced to diagrams known as free-body diagrams. These diagrams show the magnitude and direction of external reactions acting on an object. In dynamics, these free-body diagrams coupled with another set of diagrams known as kinetic diagrams are ubiquitous in analyzing an object that is in motion. The goal of this project is to provide a medium through which the student will be able to visualize the motion of objects and practice generating the appropriate diagrams.
English Composition Using Mobile Application Technology
Abstract:
This ePortfolio represents a course redesign for Freshman English Composition with the implementation of Mobile Application Technology. Mobile Application pedagogy goes beyond the Flipped Classroom pedagogy in that student engagement and instructor feedback is performed in a real time" environment. This course is contextualized in a cycle of 15-20 minute lecture followed by a 15-20 minute application and the cycle repeats for the duration of the class. "
Flipped and Blended Redesign for a History Course to Incorporate Student Engagement
Abstract:
Mexican American Studies (MAS) regularly offers MAS 10A/B Mexican American contributions to U.S. History and Government to serve San Jose State University’s (SJSU) ethnic Mexican population and others interested in examining U.S. history and government with an emphasis on the ethnic Mexican experience. The course is designed to be taken sequentially over two semesters to cover the broad scope of the nation’s emergence and political development from the ethnic Mexican perspective beginning prior to the arrival of the Spanish up to the present day. In addition to supporting the ethnic Mexican community generally, MAS expects this course to attract students to the MAS minor and soon to be established MAS major. As an entry level offering, MAS intends for the course to provide skill development for ethnic Mexican students who arrive on campus with various levels of preparation. The proposed course redesign focuses effort in four critical areas. First, MAS 10A/B has been redesigned as a flipped, or blended, course to expand the pedagogical platform to deliver greater amount of content in several curricular areas and provide more consistent support to develop reading, writing, communication, and research skills. Second, introduction of a flipped model will support additional efforts to convert MAS 10A/B from a traditional lecture course to a student-centered learning space incorporating active learning approaches. Third, the redesign of MAS 10A/B takes advantage of a modular format to organize content, concepts, and historical debates with a focus on skill building in reading comprehension, lecture capture, written communication, research, note-taking and effective study habits. Fourth, cultural citizenship is a critical conceptual tool in the Mexican American Studies canon and has been incorporated into the redesigned classroom to realign the course curriculum to highlight ethnic Mexican political agency in specific conjunctures of the American experience.
Flipped Classroom using Online Learning Modules & Quizzes in BIO121 (Molecular Cell Biology)
Abstract:
BIO121 (Molecular Cell Biology), an upper division course required for almost all biology majors, has suffered from a failure rate of 30-40% since its inception. This content dense, fast-paced course builds on foundational concepts, so students who fall behind early tend to stay behind. I plan to use online learning modules as pre-assignments to introduce foundational concepts (with text, figures and videos) in advance of lecture. Each module will include an online quiz with synthesis level questions to encourage active thinking about the module content, as well as to provide the students with immediate feedback. Online discussion boards associated with each module will be used to facilitate peer instruction.
Flipped Strength of Materials" Engineering Course"
Abstract:
Mechanics is the foundation of all engineering programs. Statics, dynamics and strength of materials are the three essential courses of engineering mechanics. In the last two years, with the help of CSU course redesign program, we have done significant amount of work in redesigning statics and dynamics courses. Strength of material is the next course in this sequence. We have approximately 550 students taking this course every year. The current failure rate in this class is 35%. However, another 35% of the students receive “C” grade in this class, meaning about 70% of all our students receive “C” grade or lower. Redesigning this course will complete the engineering mechanics sequence and help improve our overall student success.
Flipping a Fluid Mechanics Course with Adaptive Learning Software
Abstract:
Fluid Mechanics I (ME 311) is the last course in the engineering mechanics sequence (statics, dynamics, fluids) which is required by both mechanical and civil engineering majors. Like statics and dynamics, ME 311 is characterized by high enrollment and high repeat rates - since Fall 2007, approximately one-third of ME 311 students have received repeatable grades (W, D or F), with another third receiving C’s. This project resulted in the creation of various supplemental materials including modular video tutorials, recorded in-class lectures, and the curation of videos that demonstrate fluid mechanics concepts. McGraw-Hill's Connect platform was used to provide an environment where students could perform self-assessment and remediation while reading the textbook.
This application is one of three applications submitted by three professors (Wayne Tikkanen, Krishna Foster, and Xin Wen) committed to working collaboratively on adapting Proven Practices to the General Chemistry sequence at Cal State LA. This cohort is half of the full-time, tenured professors who regularly teach General Chemistry at Cal State LA. The collaborative nature of this project will make it easier to institutionalize and sustain the instructional strategies. Because the strategies will be developed by a group rather than by a single individual, non-participating faculty cannot characterize the proposed changes as something impossible to institutionalize.
Hybrid Team-Based Learning Course: Redesigning an Undergraduate Social Psychology Class
Abstract:
In summer 2014, I flipped my Social Psychology class using Team-Based Learning model (TBL) as a guide in order to encourage students to read before the class and interact more with other students in class. TBL is a unique collaborative learning method in which students become active rather than passive learners, while a teacher becomes a guide rather than a performer on stage (Sweet and Michaelsen 2012). In this course redesign project, I transform the flipped Social Psychology class into a hybrid one, posting the lectures and videos online, while spending even more in-class time for team and class discussion. By adopting a hybrid structure, this class offers the benefits of both the traditional face-to-face class and online class.
Intermediate Accounting with Supplemental Instruction
Abstract:
Use of Supplemental Instruction for intermediate accounting to facilitate student learning of complex concepts and uses in business to increase student success.
The Biology major switched over to requiring iPads in Fall 2013. iPads break down many past constraints. We can present material that is rich in color photographs, videos, interactive widgets, and even little games. In a lecture class, students can quickly upload images and be quizzed in real-time. Apps as well as widgets can be produced that make learning the material more visual and engaging. In addition, we are taking the opportunity to redesign so as (i) to make the information more up to date, (ii) to take full advantage of campus organisms, and (iii) to have the students learn via doing small projects. Flipped is involved in the sense that we take a great deal of class time for active learning, and a great deal of information consumption is done via video and other media between classes; iPads are something like super clickers for example allowing students to submit drawings in the middle of a class activity; most importantly, we are able to capitalize on redundantly teaching through reading, visuals, hands-on-the-organisms, and projects.
Principles of Marketing - Revamped for Student Success
Abstract:
The Principles of Marketing course is one of the highest in demand in registration numbers in our college with 7-10 sections being offered every semester, including a number of sections online. The previous course design created a bottleneck for graduation and may have actually detered students from concentrating in marketing or related business disciplines. Our objective is to reduce the number of failing (repeatable) grades in this required course through course redesign and increase interest in the marketing concentration. The redesign of this section proved to be effective in increasing engagement and reducing failing grades.
Redesigning Thermodynamics with Activities and Technology
Abstract:
Thermodynamics is a notoriously difficult course in engineering. New concepts and terminology that are often abstract and counterintuitive for engineering students cause confusion. This project will focus on developing computer simulation modules that demonstrate key concepts and in-class activities that encourage peer-to-peer interaction and knowledge development to enhance student learning, engagement, and time on task to provide an enhanced learning experience. Student success will be measured using formative and summative assessments. Overall student success will be compared against previous course offerings.
Student Success in Business Calculus Using Clickers & ALEKS
Abstract:
In the 2015-16 School year, we implement, analyze and revise materials for a new format, which has 2 50-minute large lectures per week, and one 2-hour lab per week. Materials include lecture notes, On-line homework problems (written in house), iclicker questions, videos, Excel projects, and lab materials. We focus our redesign efforts around improving the allignment between our student learning outcomes with our course materials and exams.
The course redesign will implement a supplemental instruction (SI) model with an enhanced curriculum that includes assignments for students to develop learning skills, such as metacognition. There are three sections in Spring 2016, each with a different SI model. Building off of an existing NSF grant, we are using three Peer Assisted Learning (PAL) facilitators. We also have an inexperienced tutor from the MLSK department. In two sections the SI lab is required. In one of these sections the SI is led by two PAL facilitators while in the other section the SI is led by one PAL facilitator with assistance from the MLSK tutor. In the third section the SI is optional, and no facilitators assigned - students have access to drop-in tutoring labs.
Supplemental Videos and Portfolios in an Introductory Statistics course for Sociology Students
Abstract:
The proposed redesign was to “flip” the class and move some of the lecture on-line for students to watch before class. This would free up more class time for students to complete in-depth activities, interact more with the material, each other, and the instructor. The goal was to produce new in-class and out-of-class exercises that truly engage the students in the course material at a level that improves their retention because they understand the nuances and logic behind the many choices one makes in conducting appropriate statistical analyses, rather than just memorizing definitions or steps. The primary goal has been increased retention of key concepts leading to lower DFW rates in both SOC 101 and 102 (the Research Methods course that follows).
Teaching Quantitative Methods In a Self-Organized Virtual Learning Environment
Abstract:
This proposal seeks to 1) increase the learning tools available in a quantitative methods course classroom, transitioning it to a high-tech, virtual environment, and 2) to redesign the curriculum to embrace a self organized learning environment that pulls students to the threshold of complex issues and allows them to experience self-actualized, liminal moments (Meyer & Land, 2013). This moves beyond hybridization by fully embracing a virtual classroom for learning technical skills – alleviating the demands of oversubscribed labs and effectively doubling class capacity. It also has the potential to allow students to engage in self-organized or self-regulated learning, going at their own pace and allowing for greater attention to be given to those who need it in completing lab assignments.
Using Web Tools in a Hybrid English Composition Class
Abstract:
This ePortfolio represents a course redesign for Freshman English Composition with the implementation of Mobile Application Technology. Mobile Application pedagogy goes beyond the Flipped Classroom pedagogy in that student engagement and instructor feedback is performed in a real time" environment. This course is contextualized in a cycle of 15-20 minute lecture followed by a 15-20 minute application and the cycle repeats for the duration of the class. "
ENGR 17 is a gateway (bottle neck) course to upper division for engineering students. The course has been taught in the traditional format. The course was first redesigned base off of the edX MOOC, this lead to a hybrid flipping the course, online assignments, practice problems, and online exams. These changes increased student engagement through new course activities and in-class / online discussions.
Hybrid and Flipped: Using Affordable Tech in Principles of Econ
Abstract:
I will use the hybrid model to make a more robust at-home learning experience for students. Using Macmillan's Launchpad site and FlipItEcon videos and assessment we will implement and test the evidence-based practices of multimedia learning, low-stakes adaptive quizzing and interleaved retrieval practice to encourage and reward mastery by lowering the cost of trying and failing.
Incorporating Virtual Labs in Introductory Geology Courses
Abstract:
Bottlenecks in introductory geology (EES1) labs arise from two compounding limitations: the number of students a lab room can hold and the number of graduate students available to serve as teaching assistants (TAs). This past Fall 2014, EES1 had ~500 seats available for ~5400 eligible GE B1students. Despite that bottleneck, lack of TAs resulted in the cancellation of 1 lecture and 5 accompanying labs. Given that the number of EES1 sections offered each semester is limited by the lab, there is a huge potential to make EES1 less vulnerable to limitations on lab size and TA availability by offering hybrid labs, where half of the labs are online and half are hands-on. This redesign seeks to implement virtual labs to reduce bottlenecking while updating EES1 lab curriculum into something that engages students at more innovative, modern levels of learning.
This project sought to reduce the proportion of repeatable grades (D, W, F) in an upper-division Theme 3 course. I am redesigning social psychology online to improve the universal design components in the course. I will incorporate auditory and visual instructional strategies via short videos. I am in the process of filming the videos to highlight course material and theories.
This course is a Psychology major upper division core course. All Psychology students are required to take this course. In general, Psychology students are not excited to take this course and find statistics extremely difficult. The vast majority of students do not have calculus experience. Many of these students are not confident that statistics will be useful in their desired career. One hypothesis is that undergraduate students view statistics largely as a set of disparate quantitative formulas. Perhaps the solution is to teach statistics in a way that emphasizes a coherent understanding of introductory statistical concepts.
Virtual Clinical Labs in Medical Surgical Nursing Course
Abstract:
This project aims to redesign the NURS220 course, a 4 unit intermediate medical surgical nursing theory course, that is offered in the spring and fall quarters of each academic year, it is a required course for nursing major. The purpose of re-designing this course is to first, improve the quality of this course, by introducing nursing students to the e-learning method known as “Virtual Clinical Excursions” (VCE), and second, to investigate nursing students’ perceptions about the effectiveness of implementing the VCE in improving their learning experiences and learning outcomes. Third, to provide students with access to virtual hospital setting in which they will have self-paced time, and safe virtual space to perform intermediate medical surgical nursing care for virtual patients.